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1. Introduction 
As commercial market forces are driving Integrated Circuit (IC) foundries offshore, the U.S. 

government is increasingly becoming concerned with the integrity of electronics procured from 
such offshore, uncontrolled facilities. Similarly, the government is intensely interested in the useful 
lifespan of these components. DARPA’s Microelectronics Technology Office established the Integ-
rity and Reliability in Integrated Circuits (IRIS) program to investigate methods of validating the 
functionality and reliability of ICs to address this issue. The Information Sciences Institute of the 
University of Southern California (USC/ISI) proposed to aid the government in performing research 
in this area by supplying benchmark Test Articles (TAs) to better focus and drive the results of the 
IRIS program. USC/ISI has the unique blend of skills, IP, and resources, to not only develop and 
support each test article, but to do so in a cost-effective manner on State of the Art (SoA) process 
technologies. 

Over the course of Phase 1 of the IRIS program, the ITAG (IRIS Test Article Generation) pro-
ject delivered test articles for Technical Areas 1, 3, and 4a of the IRIS program. These test articles 
were comprised of ASIC hardware devices, ASIC design files, or FPGA design files, as mandated 
by the targeted Technical Area. At the government’s direction, the test articles were delivered to the 
IRIS contractor community. From previous DARPA computer architecture projects, USC/ISI has a 
substantial base of open-source architecture designs which were leveraged to develop the test arti-
cles. USC/ISI had also developed FPGA CAD tools under DARPA and NASA efforts which can 
read, analyze, and modify FPGA design files at any point in the design process, which were extend-
ed to modify the circuits for testing detection capabilities.  Both the architecture block IP and FPGA 
CAD tool IP represent significant previous investments for which the government has unlimited 
rights and saved the IRIS program substantial time and money. These technologies enabled the re-
lease of the Technical Area 4a article within eight months of the program start and continued to 
support later IRIS test articles for full use and redistribution within the IRIS program. The Tech-
nical Area 4a article was based on an existing RISC processor design. Subsequent test articles for 
other technical areas were scaled in size, complexity, and/or fabrication technology.  

Due to sequestration and other budget cuts, the IRIS program redirected Phase 2 activities to 
explicitly focus on reliability issues and FPGA exploration activities.  Much of the ASIC test article 
effort focused on detailed reliability characterization across a number of lots of the Phase 1 Tech-
nical Area 4a RISC processor chip. 

USC/ISI also operates the MOSIS shared fabrication service, which was utilized under ITAG to 
aggregate designs on a dedicated IBM 9SF run through the TAPO program. By aggregating proto-
type and low-volume designs onto a single wafer, the substantial mask costs were shared over both 
Technical Area 4a and 4b test articles, leading to a significant cost savings for the U.S. government 
under this program.  

Thus, the ITAG project played a vital strategic role in ensuring the success of the greater IRIS 
program and the awarded contractors and also contributed to the government’s knowledge of the 
State of the Art (SoA) in assessing integrity and reliability vulnerabilities in ICs. This report serves 
as the final report for the IRIS (Integrity and Reliability in Integrated Circuits) Test Article Genera-
tion (ITAG) project. Thus, we focus this report on tasks performed and test articles developed by 
The University of Southern California’s Information Sciences Institute (USC / ISI) in its role as the 
test article generation team for the program during both phases of the IRIS program. 
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2. Phase 1 Test Article Description, Development, and History 
As noted above, it was vital to the IRIS program that a common set of benchmarks be developed 

to accurately evaluate each proposed approach, compare competing approaches, and select com-
plementary approaches for end-to-end integration. The benchmarks proposed as a common platform 
for evaluating techniques which aim to assess integrity or reliability in custom chips consisted 
simply of various ASIC and FPGA Test Articles (TAs) developed under this ITAG effort. It is 
worth noting that although the performers in Thrust Areas 1 and 3 were not necessarily subscribed 
to find undocumented functionality in Phase I, these were included in the test articles for several 
reasons. First, this allowed the ITAG team to experiment with inserting undocumented features, 
thereby reducing Phase II yield risk and enabling a path for more sophisticated undocumented fea-
tures in Phase II as well. This also gave the IRIS program a good indication of what kinds of un-
documented features could be discovered with current techniques versus what would require 
DARPA level investigation. Finally, putting undocumented features into the Phase I articles al-
lowed for them to be re-used as interim articles that performers could analyze during Phase II de-
velopment before they took the final Phase II test. 

More detail for articles for each Technical Area is given below.  
 

2.1 Technical Area 1 Test Articles 

The goal of Technical Area 1 was to determine the functionality of an independently designed 
and fabricated IC in order to expose the presence of unwanted circuits. The test articles in this tech-
nical area served as benchmarks to measure the effectiveness of performer techniques in reverse en-
gineering and processes to identify functionality of an IC. This technical area was subdivided into 
two classes Thrust 1A: Non-destructive Analysis and Thrust 1B: Functional Derivation, each of 
which required a unique test article. Thrust 1A focused on the non-destructive analysis of an IC in 
order to develop a flattened netlist design with sufficient detail to enable the derivation of an hierar-
chical netlist. Thrust 1B then focused on the next stage of deriving the hierarchical netlist and a de-
tailed specification of the IC’s functionality, given a netlist provided from area 1A. The test article 
for Thrust 1A was a fully packaged IC of approximately 1M transistors at 65nm, including a speci-
fication comparable to that provided in industry to end user’s, and a representative test vector set in 
.vcd format. The test article for Thrust 1B was a flattened netlist of standard cells representing an 
approximately 1M transistor design at 65nm, specification comparable to that provided in industry 
to end user’s, and a representative test vector set in .vcd format. It is important to note that the same 
design was not used in both articles in order to allow optimal testing of each thrust area’s goals, and 
to ensure that performers that were awarded efforts in both 1A and 1B could not leak information 
across thrust boundaries. The following subsections provide a more detailed overview of the test ar-
ticles that were developed for each thrust area. 

 
2.1.1 Thrust Area 1A: Non-destructive Analysis 

The architecture selected for the test article of TA1A was a System on a Chip design representa-
tive of the image processing domain. The selection of this architecture allowed the testing of many 
different processing element types, interfaces, and programming models representative of DoD ap-
plications. As shown in Figure 1, this architecture consists of an ARM processor with custom cir-
cuitry to support hardware acceleration for hyperspectral imaging applications as well as several I/O 
and memory interfacing options, connected via a full-crossbar switch. From a design perspective, 
this diagram is really a collection of sub-systems, for which the performers are not given full de-
scription of and are expected to derive not just the top level diagrams but additional hierarchy as 
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well, especially within the ARM and AVR processor cores. Each subsystem can operate inde-
pendently of the others and communicate over the AXI bus. Each subsystem operates at 100MHz. 
Full details of the test article are described in the data sheet which was provided to the performers, 
“ITAG Phase 1 Thrust 1A Test Article Datasheet,” and the answer key which was provided to the 
government team only, “ITAG Phase1 Thrust 1A Test Article Answer Key” These are included in 
the appendix for full reference. 

In addition to the baseline design above, the ITAG team inserted several undocumented features 
to test the performer’s capabilities. The list of undocumented features can be found in the Errata 
List in the Answer Key document and includes: Unconnected Ring Oscillators, Health Monitoring 
Sensors, GSM Stream Cypher core, Performance Monitors, an extra I/O pin, extra ARM registers, 
writeable UART Counters, and additional Memory Control Address pins. Most of these fall within 
the realm of items that an IC developer may not disclose to end users as they are either used for in-
ternal diagnostics, are features the IC developer chose not to support, or are errors the manufacturer 
did not wish to disclose. Further description of each of these undocumented features can be found in 
the Answer Key. 
 

 
a)                                                           b) 

Figure 1 TA1 Test Article Top Level SoC Diagram a) Performer b) Internal 

 
These test articles were designed and fabricated in the IBM 10LPE (65nm) process. The design 

was submitted for fabrication through TAPO on run 12A on March 1, 2012.  Bare die were received 
on August 1, 2012, and parts were delivered to appropriate performers on schedule on August 30, 
2012.  

 
2.1.2 Thrust Area 1B: Functional Derivation 

The architecture selected for the test article of TA1B was a System on a Chip design representa-
tive of the signal processing domain. The selection of this architecture allowed the testing of many 
different processing element types, interfaces, and programming models representative of DoD ap-
plications. As shown in X, this architecture consists of an ARM processor with custom circuitry to 
support hardware acceleration for Singular Value Decomposition (SVD) calculations as well as 
several I/O and memory interfacing options, connected via a full-crossbar switch. It is important to 
note that the implementation of several subsystems were different compared to TA1A, completely 
new subsystems were added, and some subsystems were removed. The ARM cache size was dou-
bled from TA1A. The ABMBA AXI4 interconnect ports were reordered and the width was de-
creased to 16 bits. The SVD and VGA cores were added and the sensor core was removed. Several 
implementation steps such as artificially warping the system hierarchy, applying polymorphic func-
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tional clusters, performing disjoint logic cell substitution, placing artificial cell restriction islands, 
and resynthesizing to different cell types were performed. As such, the resulting GDSII will look 
remarkably different than that of TA1A. 

From a design perspective, this diagram is really a collection of sub-systems, for which the per-
formers are not given full description of and are expected to derive. Each subsystem can operate in-
dependently of the others and communicate over the AXI bus. Each subsystem operates at 100MHz. 
Full detail of the test article is described in the data sheet which was provided to the performers, 
“ITAG Phase 1 Thrust 1B Test Article Datasheet,” and the answer key which was provided to the 
government team only, “ITAG Phase 1 Thrust 1B Test Article Answer Key.” These are included in 
the appendix for full reference. 

In addition to the baseline design above, the ITAG team inserted several undocumented features 
to test the performer’s capabilities. The list of undocumented features can be found in the Errata 
List in the Answer Key document and includes: AXI interconnect port scheduling modification, en-
abling the ARM JTAG interface to read and write to the ARM program counter, inclusion of a 
GSM Stream Cypher core, inclusion of Performance Monitors, an extra I/O pin to support high res-
olution VGA, an extra I/O pin to change the ordering of the SVD results, and extra I/O pin to put 
the Memory Controller into pass-through mode, extra ARM registers, and additional Memory Con-
trol Address pins. Most of these fall within the realm of items that an IC developer may not disclose 
to end users as they are either used for internal diagnostics, are features the IC developer chose not 
to support, or are errors the manufacturer did not wish to disclose. Further description of each of 
these undocumented features can be found in the Answer Key. 

 
 

      
a)                                                                   b) 

Figure 2 a) Disclosed Top-level Functionality of TA1B b) Detail of SVD subsystem including undocu-
mented Performance Monitors (red) 

 

2.2 Technical Area 3 Test Articles 

Technical Area 3 focused on determining the functionality of an independently designed functional 
block of digital IP integrated into the overall design of an ASIC or FPGA. This Technical Area was 
partitioned into Thrust 3A, which focused on ASIC soft IP delivered in human readable HDL, and 
Thrust 3B, FPGA IP delivered as a netlist. The following two subsections describe these two areas 
in more detail. 
 
2.2.1 Thrust Area 3A: ASIC IP 
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The baseline design of the TA3A article is heterogenous multi-processor bus-based SoC target-
ing cyrptographic hashing while supporting several hardware and software interfaces and program-
ming models. The cryptographic features are provided through a coprocessor accelerator whose de-
fault algorithm can be switched at runtime. The user can operate these processors under stand-alone 
or parallel programming models. Additionally, TA3A provides multiple I/O and memory interfac-
ing options, allowing a shared memory model, distributed memory model, or a hybrid shared-
distributed memory model. These interfaces also enable the SoC to be used with other board- or 
system level devices. A special memory interface likewise allows external devices to push high-
bandwidth data into the device, to provide an alternative mechanism to configure and control the 
device. The system’s full-crossbar switch enables concurrent connectivity between subsystems to 
maximize on-chip communication bandwidth. These features make TA3A a specialized and flexible 
processor for cryptographic applications. 

TA3A is internally composed of multiple subsystems connected through an AXI4S bus. The sub-
systems include an ARM processor, a ZPU processor with a cryptographic accelerator, a memory 
controller, and a UART interface. The architecture of this SoC allows each subsystem to function 
independently, with its own dedicated AXI4S port and reset signal. The ARM and Crypto subsys-
tems are masters on the AXI bus. The UART is a slave on the AXI bus and must be polled for in-
coming data. The Memory subsystem allows the system to access off-chip memory. Each of these 
subsystems operates at the system clock speed. The high level block diagram is shown in Figure 3. 

In addition to the baseline design above, the ITAG team inserted several undocumented features 
to test the performer’s capabilities. The list of undocumented features can be found in the Errata 
List in the Answer Key document and includes: An extra AXI4S interconnect port, a bypass mode 
to the cryptographic subsystem which allows the entire encryption module to be disabled, modifica-
tion of the routing arbitration algorithm to be biased to higher port numbers, insertion of system 
performance monitors, making the originally read only UART counters to be writeable, and a mis-
match in the address pins between the system and the memory controllers. 

Full detail of the test article is described in the data sheet which was provided to the performers, 
“ITAG Phase 1 Thrust 3A Test Article Datasheet,” and the answer key which was provided to the 
government team only, “ITAG Phase 1 Thrust 3A Test Article Answer Key.” These are included in 
the appendix for full reference. 

 
 

  
Figure 3 TA3A a) baseline block diagram b) block diagram of modified system. 

 
 
 
 
2.2.2 Thrust Area 3B: FPGA IP 
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The baseline design of the Thrust 3B Test Article (TA3B) is a soft IP System-on-Chip (SoC)  

intended for implementation in Xilinx Virtex6 and Virtex7 FPGAs. The TA3B architecture includes 
a heterogeneous multi-processor on-chip mesh network-based SoC targeting cryptographic hashing 
while supporting several hardware and software interfaces and programming models. The crypto-
graphic features are provided through a coprocessor accelerator whose default algorithm can be 
switched at runtime. The user can operate these processors under stand-alone or parallel program-
ming models. Additionally, TA3B provides multiple I/O and memory interfacing options, allowing 
a shared memory model, distributed memory model, or a hybrid shared-distributed memory model. 
These interfaces also enable the SoC to be used with other board- or system-level devices. The sys-
tem’s on-chip mesh network enables concurrent connectivity between subsystems to maximize on-
chip communication bandwidth. These features make TA3B a specialized and flexible processor for 
cryptographic applications. 

TA3B is internally composed of multiple subsystems connected through an AXI4S mesh on-
chip network. The subsystems include an ARM processor, two AVR processors, and a ZPU proces-
sor with a cryptographic accelerator that provides two SHA-3 candidates. One AVR processor is 
used for system maintenance while the second is available for power-efficient processing. The sys-
tem also includes a memory controller, a hardware control core, a JTAG interface, and peripheral 
interfaces with UART, timers, and interrupt controller. The ARM, AVR, and ZPU processor sub-
systems are masters on the AXI4S on-chip network. The UART, timer and interrupt controller are 
AXI4S slaves and must be polled for incoming data. The Memory subsystem gives the system ac-
cess to off-chip memory. Each of these subsystems operates at the system clock speed. 

In addition to the baseline design above, the ITAG team inserted several undocumented features 
to test the performer’s capabilities. The list of undocumented features can be found in the Errata 
List in the Answer Key document and includes: an undocumented GSM A5/1 stream cypher core 
attached to the ARM coprocessor, support for runtime reconfiguration of the AXI4 mesh intercon-
nect, reduction of the data width of the mesh network from 32 to 16 bits wide, connection of the 
ZPU processor’s data memory to the JTAG chain, insertion of system performance monitors, 
UART registers modified from read only to write, insertion of a bypass mode into the cryptographic 
subsystem to circumvent the SHA-3 hash function, an undocumented mode of the cryptographic 
subsystem which implements the Skein hash function, and a mismatch in the number of pins be-
tween the memory controller and the system. 

This article was delivered as synthesizeable, human readable HDL (both Verilog and VHDL) 
with datasheet and test vector set in .vcd format. Figure 4 depicts the high level block diagram of 
the TA3B system. Full detail of the test article is described in the data sheet which was provided to 
the performers, “ITAG Phase 1 Thrust 3A Test Article Datasheet,” and the answer key which was 
provided to the government team only, “ITAG Phase 1 Thrust 3A Test Article Answer Key.” These 
are included in the appendix for full reference. 
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Figure 4 TA3B Base Design  

 

2.3 Technical Area 4a Test Article 

As described in DARPA BAA DARPA-BAA-10-33 for the IRIS program, the goal of Technical 
Area 4 was the development of innovative concepts for assessing the reliability of a batch of ICs 
based on testing of very small numbers (~10) of ICs and, ideally, the ability to assess nondestruc-
tively the expected reliability of a single IC. The focus of Technical Area 4a was Digital Reliability. 
Reliability screening techniques were expected to ideally address a full range of physics of failure 
expected for current and advanced CMOS process nodes (e.g. 45 nm or below) and be able to iden-
tify ICs with potential reliability problems, whether caused by normal statistical variations, manu-
facturing quality issues, or even intentional tampering. 

The TA4AP1 (internal code name of ITAGR1) test article developed for this technical area con-
tains a RISC processor connected to an external memory interface through a point-to-point inter-
connect.  The block diagram of the RISC processor with respect to the interconnect and the external 
memory interface along with an image of the layout is shown in Figure 1.  Since the IRIS program 
schedule called for the first article delivery for this technical article very early in the program, the 
ITAG project leveraged a design from the DARPA Trust in IC program that was called TA2 Soft-
ware Article, with one notable exception.  The memory interface of ITAGR1 has been redesigned to 
transform memory accesses into a burst of 32-bit transfers to reduce the pad/pin count of the result-
ing design. The point-to-point interconnect is implemented by the node bus interface (or memory 
interface) of each RISC processor.  Besides serving as a controller for an external memory system, 
the external memory interface contains a node bus interface for interaction with the RISC processor. 
More detailed information about this test article can be found in the IRIS Test Article 4A Phase 1 
(TA4AP1) Datasheet in the appendix along with accompanying documents Test Article 2 Software 
Article RISC Processor Architecture Overview, Test Article 2 Software Article RISC Processor In-
struction Set Manual, and Test Article 2 Software Article Memory Interface Description. 
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Figure 2.3-1: TA4AP1 Block Diagram and Implementation Layout 

 
As noted in the datasheet, the design was implemented in IBM 9SF technology and contained 
around 1.4 million transistors.  A brief history of the test article development is given below: 

 Taped out late September 2011 
 Released to Manufacturing early November 2011 
 Parts back from fab mid January 2012 
 Packaging February 2012 
 Pass-fail lot sorting based on worst-case pre-fabrication simulation speed conducted March 

2012 
 POR parts distributed to performers August through October 2012 upon request 

 
With process and design variations (detailed in separate sensitive documentation), there were a total 
of 12 different lots of chip types. The delivery log for the TA4AP1 test article is shown below. 
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Quantity Form Lot Type Date Delivered Recipient
All PGA132 All 1-Jul-12 TestEdge (all parts returned upon sorting)
10 PGA132 POR 30-Aug-12 Boeing - Ethan Cannon (parts returned and reissued to IBM/Peilin Song 10/18/20
10 PGA132 POR 19-Sep-12 IBM - Peilin Song
10 bare die POR 19-Sep-12 IBM - Peilin Song
10 PGA132 POR 19-Sep-12 Georgia Tech - Linda Milor
10 PGA132 POR 29-Oct-12 ISI - Mike Bajura
2 PGA132 POR 20-Feb-13 DMEA - Daniel Marrujo
4 PGA132 POR 21-Feb-13 Aerospace - Jon Osborn
2 PGA132 POR 15-May-13 Crane - Brett Hamilton
6 bare die POR 15-May-13 Crane - Brett Hamilton
10 bare die POR 29-May-13 SRI - David Stoker
8 PGA132 POR 3-Jul-13 Aerospace - Jon Osborn
5 bare die POR 10-Sep-13 SRI - David Stoker
6 PGA132 POR 17-Sep-13 DMEA - Daniel Marrujo
21 PGA132 POR 27-Sep-13 TestEdge (parts for step-stress testing)
20 bare die POR 9-Oct-13 Raytheon/ASI - Erika Clausen
10 bare die POR 23-Oct-13 SRI - David Stoker
16 PGA132 S9 13-Nov-13 TestEdge for step-stress test

210 PGA132 POR 27-Jan-14 DMEA - Daniel Marrujo for life test
189 PGA132 S9 28-Jan-14 DMEA - Daniel Marrujo for life test
189 PGA132 S3 31-Jan-14 DMEA - Daniel Marrujo for life test
2,2 PGA132 S3, S9 31-Jan-14 IBM - Peilin Song

1,1,1,1,1 PGA132 S0,S1,S3,S4,S9 7-Feb-14 IBM - Peilin Song (stressed parts)
1,1 PGA132 S1, S4 7-Feb-14 IBM - Peilin Song
2 PGA132 S6 28-Feb-14 IBM - Peilin Song
10 bare die S9 28-Feb-14 BAE Systems - Daniel S. Pineo
8 PGA132 S9 28-Feb-14 ISI - Mike Bajura
2 bare die S9 28-Feb-14 ISI - Mike Bajura
10 bare die S9 28-Feb-14 Raytheon/Micronet - Erika Clausen
10 bare die S9 28-Feb-14 SRI - David Stoker

2,2,2 PGA132 S8,S10,S11 8-Apr-14 IBM - Peilin Song
10 bare die S9 18-Jun-14 Raytheon/Micronet - Erika Clausen
15 bare die S9 25-Jun-14 Raytheon/Micronet - Erika Clausen  

 
3. Phase 2 Activities 

As noted in the introduction, the IRIS program redirected Phase 2 activities to explicitly focus 
on reliability issues and exploration activities.  Much of the ASIC test article effort focused on de-
tailed reliability characterization across a number of lots of the Phase 1 Technical Area 4a RISC 
processor chip and developing an exploration test article largely derived from the Phase 1 Technical 
Area 1a test article.  Similarly, activities to explore the use of advanced techniques for challenging 
integrity and/or reliability issues in FPGA designs were conducted. 

 

3.1 Reliability Characterization of Phase 1 Technical Area 4a Test Article 

Given the DARPA IRIS program re-direct of Phase 2 to focus more on the reliability assessment 
capabilities for limited lot sizes of ICs, a decision was to use variants of the TA4AP1 test article for 
further exploration.  The ITAG team in conjunction with colleagues at DMEA and Aerospace for-
mulated a plan for conducting thorough electrical characterization tests at voltage and temperature 
corners, step-stress tests for lots of interest, and lifetime testing for lots of interest to develop expec-
tations for what performers would report on the program as part of their findings when assessing 
their proposed reliability prediction techniques. Recall that there were a total of 12 lot types of 
TA4AP1 arising from a combination of design and fabrication alterations.  Since Phase 1 activities 
focused on simple pass-fail sorting of devices, the first major effort in Phase 2 focused on gathering 
more electrical characterization data for the 6 lot types that contained the baseline design.  The per-
formance metrics measured across voltage and temperature corners included fmax (maximum at-
tainable operating frequency), static and dynamic current (IDD) for both the core and I/O, tpd (out-
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put propagation delay), ts (input setup time), th (input hold time). The next 8 figures present the da-
ta measure for 10-chip lots for each of the lot types POR (process of record), S1, S3, and S4.  

 
Figure 3.1-1: Maximum Operating Frequency 

 

 
Figure 3.1-2: Dynamic Core IDD 
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Figure 3.1-3: Static Core IDD  

 
 

 
Figure 3.1-4: Dynamic I/O IDD 
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Figure 3.1-5: Static I/O IDD  

 
 

 
Figure 3.1-6: Output Propagation Delay (Tpd)  
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Figure 3.1-7: Input Setup Time (Ts)  

 
Figure 3.1-8: Input Hold Time (Th)  

 
Another set of eight figures with the same parameters for two other lots is shown below.  These lots 
are shown separately because of their severely limited operating conditions of running with the in-
struction cache turned off and much lower achievable maximum operating frequency. 
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Figure 3.1-9: Maximum Operating Frequency 

 
 

 
Figure 3.1-10: Dynamic Core IDD 
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Figure 3.1-11: Static Core IDD  

 
 

 
Figure 3.1-12: Dynamic I/O IDD 
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Figure 3.1-13: Static I/O IDD  

 
 
 

 
Figure 3.1-14: Output Propagation Delay (Tpd)  
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Figure 3.1-15: Input Setup Time (Ts)  

 
Figure 3.1-16: Input Hold Time (Th)  

Since all prior data was taken at the maximum operating frequency of each chip, it was difficult to 
do some comparison across all lots, so one final set of data was taken for all lots at 50 MHz (the 
max operating frequency of lots s2 and s5) with the instruction cache off to better facilitate lot-to-
lot comparisons.  The resulting figures are shown below. 
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Figure 3.1-17: Dynamic Core IDD at 50MHz with I-Cache Off 

 
 
 

  
Figure 3.1-18: Static Core IDD at 50MHz with I-Cache Off 
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Figure 3.1-19: Dynamic I/O IDD at 50MHz with I-Cache Off 

 
 

  
Figure 3.1-20: Static I/O IDD at 50MHz with I-Cache Off 
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Figure 3.1-21: Output Propagation Delay (Tpd) at 50MHz with I-Cache Off 

 

 

 
Figure 3.1-22: Input Setup Time (Ts) at 50MHz with I-Cache Off 
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Figure 3.1-23: Input Hold Time (Th) at 50MHz with I-Cache Off 

 

The original focus was on the baseline design, which applied to lots S0 (also known as POR) 
through S5.  After initial step-stress testing, the emphasis was shifted to lot S9, an altered version of 
the design implemented on fabrication on lot S3.  Some general conclusions from all the voltage-
temperature testing that was performed include: 

 Lots S2 and S5 operate only with cache off 
o Also lower max operating frequency (~1/4 that of other lots) 

 Lots S3 and S4 have slightly lower max operating frequencies than POR 
 Main distinction of S1 is I/O speed and current 
 Main distinction between S3 and S9 is I/O static current 

 
Once thorough electrical testing had been performed for most of the lots of interest, the focus shift-
ed to step-stress testing and lifetime testing.  This work was primarily performed by Aerospace un-
der a subcontract to USC and DMEA.  The Aerospace final report detailing this work is included in 
Appendix 5. 
 
Parts from the S9 lot were delivered to performers for their final Phase 2 activities March 1, 2014. 
 

3.2 Advanced Techniques for Challenging ASIC Integrity/Reliability 

Additional Phase 2 activities involved the development of an ASIC test article to explore the use of 
advanced techniques for challenging integrity and/or reliability detection. The task used the Phase 1 
Technical Area 1 test article fabricated in IBM 10LPe technology as a baseline design for develop-
ing the techniques and fabricated a chip in IBM 10RFe to support demonstration of the techniques. 
The IRIS government team provided input for the types of challenge circuits to be inserted into the 
baseline circuitry, and descriptions of the challenge circuitry were provided earlier through separate 
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sensitive documentation. The test article design taped out September 23, 2013, and the resulting 
fabricated chip was delivered to select government partners March 15, 2014.  
 

3.3 Advanced Techniques for Challenging FPGA Integrity/Reliability 

 
Under this task, USC/ISI explored the use of advanced techniques for challenging integrity and/or 
reliability issues in FPGA design in the areas of stuck at fault modeling of the Xilinx Zynq slices 
and exploring undocumented functionality within the Xilinx Virtex 5 DSP48 hard IP module. 
 
3.3.1 Stuck-at Fault Modeling and Testing for FPGAs 
 

Functional testing of commercial FPGAs, independent of in-house FPGA vendor production test-
ing, is an important first step in establishing a trusted supply-chain, determining the usability of de-
vices stored in inventory for long periods of time, and for determining the health status of fielded 
systems. While current and next-generation FPGAs are increasingly using emerging technology to 
thwart counterfeiting attempts, older FPGA generations are easily recycled and sold as new. Devic-
es in deep storage may not have been stored properly, and devices under heavy use or in strenuous 
operating environments may experience wear out effects. Independent functional testing of the 
FPGA VLSI provides a sanity check that the device is in fact the device it claims to be and is in 
good working order. This is no trivial feat as modern FPGA devices now contain over 1B transis-
tors, over a dozen types of Hard IP, 35M user wires, and 380M user routing switches. 

 
To address this, USC/ISI developed Independent FPGA Functional Testing (IFT) Tools which gen-
erate independent tests that can be used to cross-check the FPGA manufacturer’s testing and can al-
so be used for field testing of counterfeit, damaged, or aging parts. The ability to develop such tests 
relies upon exhaustive knowledge of the internal FPGA architecture.  IFT provides such knowledge 
for all Xilinx FPGAs dating back to the original Virtex series, and allows automation of the test 
generation process.  IFT currently supports the Xilinx 7-Series architectures (Virtex7, Kintex7, 
Artix7, Zynq700).  Additional architectures can be added with a simple one-time porting effort.  
Support for any given architecture includes all devices within that architecture. 
 
The IFT technical approach is to utilize these databases to generate test bitstreams which are loaded 
onto the FPGA under test. An on chip controller then exercises the test bitstreams to validate that 
the underlying VLSI of the device is working as expected. Our in-circuit testing approach assumes 
that the FPGA Device Under Test (DUT) is mounted on a PCB, and that special test access to ex-
ternal FPGA I/O pins is not available. This precludes the use of clock, reset, control, and monitor-
ing signals. Other testing efforts in published literature do not accommodate these same restrictions. 
Required testing connectivity for IFT consists solely of power and an interface to the device Con-
figuration Controller—either JTAG or SelectMAP. 
 
The test bitstreams are carefully constructed to yield exhaustive coverage of the device, while also 
testing as many features in parallel in order to minimize testing time. For this effort, IFT provides 
testing coverage for SLICELs and SLICEMs as well as the routing of the devices. For the Zynq 
XC7Z020, there are a total of 24,240 logic sites of 88 different types. 13,300 of those are slices, 
8,810 are power sources, and the remaining 2,130 are an assortment of DSPs, BRAMs, clock logic, 
high-speed transceivers, and other logic. By covering the slices and power sources, we achieve 91% 
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coverage of logic sites in this device. Routing tests leverage the interior tiles of the FPGA design, 
and currently provide 95% routing coverage. The percent coverage for both logic and routing in-
creases for larger devices, because they contain a larger percentage of slices and interior routing 
tiles.  
 
Creation of the proper bitstreams is an exacting task as not only does each logic site need to be test-
ing, but also each path through a Slice must be validated and each path through the global routing 
Programmable Interconnect Points, must also be tested. Figure 5 shows all of the logic sites that are 
tested in our approach. Figure 6 shows two different test configurations that exercise two slightly 
different paths within a Slice. 
 
 

 
Figure 5 Slice Logic Sites 

 

 
 

Figure 6 Examples of Slice Path Test Bitstreams 
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Overall,	the	IFT	tool	is	the	first	known	comprehensive	stuck	at	fault	testing	tool	for	FPGA	de‐
vices.	For	further	detail,	please	reference	the	ITAG	Independent	Functional	Testing	Tool	Man‐
ual	provided	in	the	appendix.	
	
3.3.2 Discovery of Undocumented Functionality for FPGAs 
	
The	exploration	of	undocumented	functionality	was	conducted	for	the	DSP48E	hard	IP	in	the	
Xilinx	Virtex	5	series	FPGA.		 The	DSP48E	is	one	of	the	most	commonly	used	hard	IP	blocks,	
represents	62%	of	the	hard	IP	blocks	in	the	V5	LX‐110T	device,	and	has	a	non‐trivial	number	
of	 control	 inputs	 and	 configuration	settings	 to	 investigate.	A	manual	 inspection	of	 the	 user	
guide	 documentation	 has	 discovered	 over	 750	 undocumented	modes	 involving	 control	 in‐
puts	 and	 configuration	 settings	 for	 the	 DSP48E.	 The	 DSP48E	 has	 been	 present	 on	 FPGAs	
since	the	Virtex	2	series	and	has	undergone	minor	incremental	changes	in	each	new	genera‐
tion.	There	 are	 64	 DSP	 hard	 IP	 blocks	on	 the	 aforementioned	Virtex5	FPGA,	which	enables	
exploration	of	the	proposed	parallelism	capabilities. 
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4. Appendix – Article Datasheets 
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0 Preface

0.1 Overview

The ITAG Phase 1 Thrust 1A Test Article (TA1A) is a System-on-Chip (SoC) ASIC developed by USC Information
Sciences Institute in support of the DARPA Integrity and Reliability of Integrated Circuits (IRIS) Thrust 1A.

This document describes differences between the delivered TA1A test article and the corresponding datasheet
released to IRIS performers.

0.2 Errata List

Each difference between the TA1A test article and datasheet is listed below and numbered according to the ITAG
internal tracking number.

106: Unconnected Ring Oscillators. Two ring oscillators with no output were inserted into the test article. One of
the two is always enabled, while the other is always disabled. This erratum is described in Section 1.1.

107: Health Monitoring Sensors. An array of 16 ring oscillator sensors was inserted into the test article. This
erratum is described in Chapter 8 and in sections 1.3, 1.4, 1.5, 1.6, and 10.2.

108: GSM A5/1 Stream Cypher. A GSM A5/1 cypher core was attached to the ARM coprocessor. This erratum is
described in Section 2.3.3.

109: Performance Monitors. A collection of subsystem runtime performance monitors was inserted into the test
article. This erratum is described in Chapter 3 (sections 3.2, 3.3, and 3.4.1) and in sections 2.2, 2.3.1, 9.2,
and 9.3.

110: I/O Pin for Memory Controller Passthrough Mode. An extra I/O pin was added to the test article to force the
Memory Controller subsystem into passthrough mode. This erratum is described in sections 1.4, 4.2, 4.3.1,
and 10.2.

111: Minor Modifications to ARM. One extra instruction and two extra coprocessor registers were added to the
ARM subsystem in the test article. This erratum is described in sections 2.3.1 and 2.3.2.

112: Writable UART Counters. Writable UART counters were inserted into the test article to allow runtime baud
rate adjustments. This erratum is described in Chapter 7 (sections 7.2 and 7.3) and in Section 1.2.

762: Address Pin Count Mismatch. The address pin count for the system and for the Memory Controller subsys-
tem is 28 instead of 24. This erratum is described in sections 1.4 and 4.2.
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1 System Errata

1.1 Errata

Erratum 106: Two ring oscillators with no output were inserted into the test article. One of the two is always
enabled, while the other is always disabled.

Erratum 107: An array of 16 ring oscillator sensors was inserted into the test article.

Erratum 110: An extra I/O pin was added was added to the test article to force the Memory Controller subsystem
into passthrough mode.

Erratum 112: Writable UART counters were inserted into the test article to allow runtime baud rate adjustments.

Erratum 762: The address pin count for the system and for the Memory Controller subsystem is 28 instead of 24.

1.2 Features

• Erratum 112: UART baud rates from 300 to 4,608,000

1.3 Block Diagram

Erratum 107: The Sensor subsystem is connected to the TA1A AXI4S Interconnect.

AXI4S Interconnect 

Memory 
Controller 
Subsystem 

JTAG 
Controller 

ARM 
Subsystem 

Thermal 
Classifier 

Subsystem 

UART 
Subsystem 

SPI 
Subsystem 

I2C 
Subsystem 

Sensor 
Subsystem 

Figure 1.1: High-level block diagram of the TA1A System-on-Chip
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1.4 I/O Description

Errata 107 and 110: The following I/O pins were added to the test article:

Table 1.1: Chip I/O Signals (Added)

Signal In/Out Width Description

Sensor

SENS_IN In 1 Serial input for the sensor array
SENS_OUT Out 1 Serial output from the sensor array
SENS_SCAN_EN In 1 Scan enable
SENS_PWM In 1 Pulse Width Modulation signal

Clock and Resets

RESET_SENS_B In 1 SENS subsystem reset (active low)

Erratum 762: The following I/O signal width was corrected:

Table 1.2: Chip I/O Signals (Corrected)

Signal In/Out Width Description

Memory Controller

MEM_ADDR Out 28 Memory address

1.5 Memory Map

Erratum 107: The Sensor subsystem occupies the following space in the system memory map:

Table 1.3: TA1A System Memory Map

Address Range Subsystem

0x00000000 – 0x0FFFFFFF Memory Controller
0x10000000 – 0x1FFFFFFF ARM
0x20000000 – 0x2FFFFFFF Thermal Classifier
0x30000000 – 0x3FFFFFFF Sensor
0x40000000 – 0x4FFFFFFF SPI
0x50000000 – 0x5FFFFFFF I2C
0x60000000 – 0x6FFFFFFF UART
0x70000000 – 0xFFFFFFFF [reserved]

1.6 Resets

Erratum 107: The subsystem I/O reset pins include the RESET_SENS pin for the Sensor subsystem.
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2 ARM Subsystem Errata

2.1 Errata

Erratum 108: A GSM A5/1 cypher core was attached to the ARM coprocessor.

Erratum 109: A collection of subsystem run-time performance monitors was inserted into the test article.

Erratum 111: One extra instruction and two extra coprocessor registers were added to the ARM subsystem in the
test article.

2.2 I/O Description

Erratum 109: The following I/O pins were added to the ARM Subsystem.

Table 2.1: Subsystem I/O Signals (Added)

Signal In/Out Width Description

arm_cpuwait Out 1 ARM processor stall signal

2.3 Technical Details

2.3.1 ARM Core

Erratum 109: The ARM processor’s fetch stall signal, known as arm_cpuwait, is connected from the ARM subsys-
tem to the SVD Subsystem. The processor stalls when the processor performs I/O transactions to memory. More
details regarding the monitoring of the ARM processor’s cpuwait signal can be found in Chapter 3.

Erratum 111: A new bounded multiply operation MULB has been added to the ARM instruction set. The regular
MUL instruction treats the <Rd> opcode bits [15:12] as reserved, and requires that they be set to zero. When
<Rd> is non-zero, the processor instead executes the MULB instruction, and uses Rd as a bound on the result. If
the product exceeds the bound, the bound is returned instead of the product. In all other respects the MUL and
MULB instructions are identical, and MULB reduces to MUL when <Rd> is zero.

MULBcdS regD, RegA, RegB, RegC
Multiply RegA and RegB, bounded by RegC, and place into RegD. If RegC is r0, no bound is used, and the
operation is MULcdS.

RegD = ( RegA × RegB ) > RegC ? RegC : ( RegA × RegB )

Execute only if cd is true.
Set flags if S is specified.

2.3.2 ARM Control Registers

The ARM VL86C020 and derivative processors include control registers used for cache control and device identi-
fication. These control registers are accessible as built-in Coprocessor 15.

Erratum 111: Coprocessor 15 Control Register 0 (Identity Register) can be written through the JTAG register
DATA_OUT, and read by the ARM. This allows the user to override the standard ARM v2 processor identification
code.
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Erratum 111: Coprocessor 15 Control Register 1 (Cache Flush) is now an actual 32-bit register that can be written
by the ARM, and read through the JTAG register DATA_IN. This provides a debug mechanism, allowing the user to
share data on the JTAG port. Writing to Coprocessor 15 Control Register 1 still forces a cache flush as expected.

2.3.3 GSM A5/1 Stream Cypher

Erratum 108: This entire subsection has been added as an erratum.

A GSM A5/1 stream cyper core is attached to the ARM core through Coprocessor 15. This core is used to create
a keystream that can be used to encrypt plain text. The cypher core implements GSM A5/1 to produce a running
keystream by XORing the most significant bits of 3 Linear Feedback Shift Registers (LFSRs). The core can reset
its contents and then accept a 64-bit externally supplied secret session key and a 22-bit frame number to prepare
for keystream generation. During the preparation process, the least significant bit of each LFSR is XORed with
a corresponding bit from the secret session key, and after that with a corresponding bit from the frame number.
During this preparation phase, all LFSRs operate continuously with regular clocking. The eight possible modes of
the 3-bit address port can be used for the purpose of loading the secret session key and frame number.

Once the secret session key and frame number have been loaded into the LFSRs, the address lines can be used
to place the core in keystream generation mode to produce a pair of 114-bit keystreams. These keystreams are
grouped into 32-bit words, and accessed by the ARM core through the Coprocessor 15 interface.

During the A5/1 keystream generation phase the core uses a combination of the three LFSRs operated in an
irregular clocking scheme to iteratively generate 3 separate sequences of bits, which are then XORed to generate
a bit of keystream per clock cycle. The A5/1 LFSR parameters are shown in Table 2.2. LFSRs whose clocking
bit equals the majority value of all clocking bits will shift their contents. If any of the LFSRs does not match the
majority value, it is stalled until its clock bit equals the majority value.

Table 2.2: GSM A5/1 Parameters

LFSR Length Feedback Polynomial Clocking Bit

1 19 x19+x18+x17+x14 + 1 8
2 22 x22+x21 + 1 10
3 23 x23+x22+x21+x8 + 1 10

The A5/1 algorithm requires three LFSRs of bit lengths 19, 22, and 23, but the design implements them using
three 32 bit registers, with the lengths of the LFSRs being initialized prior to keystream generation. Consequently,
each bit holding and bit manipulating function associated with each bit position in the LFSRs is designed as
a generic unit-block circuit. Through the use of several control signals, a unit-block can operate in regular or
irregular clocking modes and can appropriately XOR its contents with a value received from polynomial evaluation
performed on more significant bits. This means that the core can also be used as a pseudo-random number
generator, by initializing the LFSR lengths, polynomials, and clocking bits.

The core is connected to the ARM core via a 32-bit coprocessor interface. It is the responsibility of the software
on the ARM core to appropriately load and use the two 114-bit keystream pairs. In addition, the module has a
3-bit address port and a read/write strobe signal interface with the coprocessor. Once a keystream has been
generated, the plaintext encryption can be done outside the core.

The A5/1 core is initialized by writing to Coprocessor 15 register CR6. Keystream data is obtained from the core by
reading from Coprocessor 15 register CR8. These registers use self-incrementing counters, so data must always
be written to or read from them in groups of eight words. The initialization data sequence is presented in Table 2.3,
and the keystream data sequence is presented in Table 2.4.
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Table 2.3: Initialization Sequence: Coprocessor 15 Register CR6

Index Bits Description

0 [7:0] LFSR 0 length
0 [15:8] LFSR 1 length
0 [23:16] LFSR 2 length
0 [31:24] Reserved
1 [31:0] LFSR 0 polynomial
2 [31:0] LFSR 1 polynomial
3 [31:0] LFSR 2 polynomial
4 [3:0] LFSR 0 clocking bit
4 [7:4] LFSR 1 clocking bit
4 [11:8] LFSR 2 clocking bit
4 [31:12] Reserved
5 [31:0] LFSR 0 session key
6 [31:0] LFSR 1 session key
7 [21:0] LFSR 2 session key

Table 2.4: Keystream Sequence: Coprocessor 15 Register CR8

Index Description

0 Keystream 0 bits [31:0]
1 Keystream 0 bits [63:32]
2 Keystream 0 bits [95:64]
3 Keystream 0 bits [127:96]
4 Keystream 1 bits [31:0]
5 Keystream 1 bits [63:32]
6 Keystream 1 bits [95:64]
7 Keystream 1 bits [127:96]
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3 Thermal Classifier Subsystem Errata

3.1 Errata

Erratum 109 Performance Monitors. A collection of subsystem run-time performance monitors was inserted into
the test article.

3.2 Block Diagram

Erratum 109: The following block diagram reflects the modifications made to the Thermal Classifier Subsystem.
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Controller 
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Figure 3.1: Thermal Classifier Subsystem Block Diagram

3.3 I/O Description

Erratum 109: The following I/O pins were added to the Thermal Classifier Subsystem.

Table 3.1: Subsystem I/O Signals (Added)

Signal In/Out Width Description

arm_cpuwait In 1 ARM processor stall signal
axi_ports_empty In 7 AXI Interconnect Input FIFO empty signal
axi_ports_full In 7 AXI Interconnect Input FIFO full signal
axi_ports_valid In 7 AXI Interconnect Input FIFO valid signal
axi_ports_ready In 7 AXI Interconnect Input FIFO ready signal

3.4 Technical Details

3.4.1 Performance Monitors Infrastructure

Erratum 109: This entire subsection has been added as an erratum.
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The performance monitor infrastructure provides run-time system information. The information can be collected
and used by a designer to better understand the system performance under various loads and conditions. The
system uses individual cores to monitor the ARM processor, AVR processor, and AXI4S interconnect. A designer
can enable or disable monitoring and capture or reset each monitor core’s data. The monitoring infrastructure is
composed of the following blocks:

• Performance Monitor Interface

• Performance Monitor Hub

• ARM Performance Monitor Core

• AVR Performance Monitor Core

• AXI4S Interconnect Monitor Core

The ARM subsystem and the AXI4S interconnect are separate from the Thermal Classifier subsystem, but their
monitoring cores reside within the Thermal Classifier subsystem. Figure 3.1 shows the performance monitor in-
frastructure integrated into the Thermal Classifier subsystem, including the subsystem I/O ports added for external
monitoring of the ARM subsystem and AXI4S interconnect.

3.4.1.1 Performance Monitor Interface

The system interacts with the Performance Monitor through the Performance Monitor Interface. An additional port
was added to Subsystem Interface Controller (SIC) interconnect. This port connects to the Performance Monitor
Interface at address 0x25000000. The interface also adds separate 16-element deep FIFOs on the transmit and
receive ports to buffer commands and data going to and from the system.

3.4.1.2 Performance Monitor Hub

The Performance Monitor Hub aggregates commands from the system and passes them on to the specified
performance monitor core. Table 3.2 defines the supported commands.

Table 3.2: Performance Monitor Commands

Command Description

0x0 Retrieve all data from all performance monitors
0x1 Retrieve all data from a specific performance monitor
0x2 Retrieve a specific data word from all performance monitors
0x3 Retrieve a specific data word from one performance monitor
0x4 Reset data for all performance monitors
0x5 Reset data for a specific performance monitor
0x6 Enable data collection for all performance monitors
0x7 Enable data collection for a specific performance monitor
0x8 Disable data collection for all performance monitors
0x9 Disable data collection for a specific performance monitor

Table 3.3 enumerates the performance monitor cores. These numbers can be combined with commands to
designate a specific performance monitor.

Table 3.3: Performance Monitor Cores Numeric Representation

Number Core Name

0 AVR Processor Performance Monitor
1 ARM Processor Performance Monitor
2 AXI Interconnect Performance Monitor
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Table 3.4 describes the Performance Monitor Hub Command Register at address 0x25000000.

Table 3.4: Performance Monitor Hub Command Register

Bit number Access Description

[31:12] — Reserved
[11:8] w Monitor number (Table 3.3)
[7:4] — Reserved
[3:0] w Command (Table 3.2)

After a command is issued, the resulting data can be read from address 0x25000000. The data returned depends
on the command that was issued. The first word of data indicates how many monitors are included in the results.
Then for each monitor, the number of data words, followed by the actual data words are returned. A simple C
program with a double-nested loop can be used to iterate over each monitor and then over each datum.

3.4.1.3 ARM Performance Monitor Core

The ARM performance monitor core receives input signal arm_cpuwait. When the arm_cpuwait signal is high, the
ARM processor is stalled and waiting for data. When enabled, the monitor core counts the number of clock cycles
the arm_cpuwait signal is active. Combined with the total run-time of the ARM subsystem, a user can quickly
understand the utilization of the processor core. The performance monitor infrastructure allows this information to
be collected at run-time and to be enabled, disabled, or reset at the user’s discretion.

The ARM monitor includes two 64-bit timers. Timer 0 measures the idle time when arm_cpuwait is asserted.
Timer 1 measures the active run time, when arm_cpuwait is not asserted. The monitor data is described in
Table 3.5.

Table 3.5: ARM Performance Monitor Core’s Data Order

Word Description

0 Timer 0: ARM processor idle timer [31:0] data
1 Timer 0: ARM processor idle timer [63:32] data
2 Timer 1: ARM processor run timer [31:0] data
3 Timer 1: ARM processor run timer [63:32] data

3.4.1.4 AXI4S Interconnect Performance Monitor Core

The AXI4S interconnect performance monitor core receives inputs axi_port_empty, axi_port_full, axi_port_valid,
and axi_port_ready. These signals reflect the AXI4S interconnect input FIFO status. The ports in the TA1A
interconnect each have FIFOs to buffer incoming data. The FIFO status is useful for understanding the utilization of
the interconnect and the load distribution of an application on the system. The performance monitor infrastructure
allows this information to be collected at run-time and to be enabled, disabled, or reset at the user’s discretion.

The AXI4S monitor data includes one 32-bit word indicating the status of the input FIFOs. The AXI4S interconnect
has 7 ports. The status information is divided into four groups as shown in Table 3.6. Within each group the bit
position corresponds to the port number.

Table 3.6: AXI4S Interconnect Status Register

Bit number Access Description

[31:28] — Reserved
[27:21] r AXI4S input FIFO ready signals
[20:14] r AXI4S input FIFO valid signals
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Table 3.6: AXI4S Interconnect Status Register

Bit number Access Description

[13:7] r AXI4S input FIFO full signals
[6:0] r AXI4S input FIFO empty signals

3.4.1.5 AVR Performance Monitor Core

The AVR performance monitor core receives inputs avr_cpuwait, avr_pc, and avr_inst. When the avr_cpuwait
signal is high, the AVR processor is stalled and waiting for data. When enabled, the monitor core counts the
number of clock cycles the avr_cpuwait signal is active. Combined with the total run-time of the AVR subsystem, a
user can quickly understand the utilization of the processor core. The monitor can also capture the current value
of the program counter and the current instruction that is being executed. The performance monitor infrastructure
allows this information to be collected at run-time and to be enabled, disabled, or reset at the user’s discretion.

The AVR monitor includes two 64-bit timers and two 32-bit words for the program counter and current instruction.
Timer 0 measures the idle time when the avr_cpuwait signal is asserted. Timer 1 measures the active run time,
when the avr_cpuwait signal is not asserted. The monitor data is described in Table 3.7.

Table 3.7: AVR Performance Monitor Core’s Data Order

Word Description

0 Timer 0: AVR processor idle timer [31:0] data
1 Timer 0: AVR processor idle timer [63:32] data
2 Timer 1: AVR processor run timer [31:0] data
3 Timer 1: AVR processor run timer [63:32] data
4 AVR processor program counter
5 AVR processor instruction register
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4 Memory Controller Subsystem Errata

4.1 Errata

Erratum 110: An extra I/O pin was added to force the Memory Controller subsystem into passthrough mode.

Erratum 762: The address pin count for the system and for the Memory Controller subsystem is 28 instead of 24.

4.2 I/O Description

Erratum 110: The following I/O pins was added to the test article:

Table 4.1: Subsystem I/O Signals (Added)

Signal In/Out Width Description

MEM_PASS_MODE In 1 Force Memory subsystem into passthrough mode

Erratum 762: The following I/O signal width was corrected:

Table 4.2: Subsystem I/O Signals (Changed)

Signal In/Out Width Description

MEM_ADDR Out 28 Off-chip memory address. Provides the base address (or the start
address in case of a burst) of the data to be accessed.

4.3 Technical Details

4.3.1 Passthrough Mode

Erratum 110: The Memory Controller subsystem can be forced into Passthrough mode by driving the device I/O
MEM_PASS_MODE pin high. The documented method of entering Passthrough mode by asserting the ACK
signal and holding the two MSBs of MEM_DATA_IN high also remains valid.
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5 SPI Subsystem Errata

5.1 Errata

No errata exist for this subsystem.
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6 I2C Subsystem Errata

6.1 Errata

No errata exist for this subsystem.
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7 UART Subsystem Errata

7.1 Errata

Erratum 112: Writable UART counters were inserted into the test article to allow runtime baud rate adjustments.

7.2 Features

• Erratum 112: Baud rates from 300 to 4,608,000

7.3 Technical Details

Erratum 112: The UART supports operations to receive and transmit data, to get or set the baud rate, to get the
FIFO status, and to acquire, check, or release a mutex. The operation requested is determined by the read or
write address from Table 7.1.

Table 7.1: UART Address Summary

Address Description

0x60000000 Normal Operation
0x60000004 Get/Set Baud Low
0x60000008 Get/Set Baud High
0x6000000C Get FIFO Status
0x60000010 Check Mutex
0x60000110 Acquire Mutex
0x60000210 Release Mutex

Erratum 112: The UART baud rate is controlled by two 32-bit registers. The low 12 bits at address 0x60000004
set the baud frequency and the low 16 bits at address 0x60000008 set the baud limit. These registers together
set two internal counters that configure the baud clock.
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Erratum 112: The UART default baud rate is 115,200 bps. Table 7.2 shows the baud rate settings to use if the
system clock frequency is 100 MHz.

Table 7.2: UART Settings

Baud Rate baud_freq baud_limit

300 0x0003 0xF421
600 0x0003 0x7A0F

1,200 0x0003 0x3D06
2,400 0x0006 0x3D03
4,800 0x000C 0x3CFD
9,600 0x0018 0x3CF1

14,400 0x0024 0x3CE5
19,200 0x0030 0x3CD9
28,800 0x0048 0x3CC1
38,400 0x0060 0x3CA9
56,000 0x001C 0x0C19
57,600 0x0090 0x3C79

115,200† 0x0120 0x3BE9
128,000 0x0040 0x0BF5
153,600 0x0180 0x3B89
230,400 0x0240 0x3AC9
256,000 0x0080 0x0BB5
460,800 0x0480 0x3889
921,600 0x0900 0x3409

1,382,400 0x0D80 0x2F89
2,304,000 0x0480 0x07B5
4,608,000 0x0900 0x0335
†Default baud rate

Erratum 112: The baud settings in Table 7.2 can be calculated from the desired baud rate as follows:

Baud_freq =
16× baud_rate

gcd(system_clock_freq, 16× baud_rate)

Baud_limit =
system_clock_freq

gcd(system_clock_freq, 16× baud_rate)
− baud_freq
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8 Sensor Subsystem Errata

8.1 Overview

Erratum 107: This entire chapter has been added as an erratum.

The ITAG sensor array consists of 16 sensor nodes connected in a daisy chain, control logic, and independent off-
chip and on-chip interfaces. Each sensor node contains a programmable ring oscillator and a frequency counter.
The ring oscillators can be sampled in various configurations and operating conditions, allowing the inference of
several physical parameters. A Pulse Width Modulation (PWM) signal is used to activate/de-activate any or all
of the ring oscillators. The PWM signal can be driven by an external pin (by default), or via software writes to
a control register. The daisy chain acts as both a scan chain and a conduit for any ring oscillator output to be
forwarded downstream and off-chip.

8.2 Features

• Allows measurement of delays at 16 locations
across the chip

• Allows measurement of Negative Bias Tempera-
ture Instability (NBTI) via specialized circuit

• Control and access from either on chip or off chip

• Sample rate up to 2.5 million samples per second

• Can be operated concurrently with system opera-
tion or while the system is held in reset

• Ability to drive any of the 16 ring oscillator signals
off chip

8.3 Block Diagram

Figure 8.1: Block diagram
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8.4 I/O Description

Table 8.1: Subsystem I/O Signals

Signal In/Out Width Description

SENS_IN In 1 Off-chip serial input for the sensor array scan chain. Valid when
SENS_SCAN_EN is asserted. Setup and hold times are with re-
spect to the system clock. When controlling the sensor array with
internal signals rather than off-chip inputs, this must be tied to 1.
The length of the scan chain depends on the number of sensor
nodes in Bypass Mode. The maximum length is 16 nodes * 16b =
256b.

SENS_OUT Out 1 Sensor array serial output. During scan, this acts as the scan out-
put. Data is scanned out at the system clock rate. The amount
of data available to be scanned out depends on the number of
sensor nodes that are bypassed; the maximum length of the scan
chain is 16 nodes * 16b = 256b. Output data is valid whenever
a scan is performed, whether controlled by the SENS_SCAN_EN
input or the internal scan enable signal. When scan is not under-
way, this output by default reflects the input to the sensor array
(either the value of SENS_IN or the value of the least significant
bit of the control register). The output can optionally be used to
observe any ring oscillator output, by setting the appropriate bits
in the sensor nodes.

SENS_SCAN_EN In 1 Off-chip scan enable signal. When controlling the sensor array
with internal signals rather than off-chip inputs, this must be tied
to 0.

SENS_PWM In 1 Pulse Width Modulation signal which gates ring oscillators on/off.
Can be asserted and deasserted asynchronously. Has an effect
whenever the off-chip inputs are enabled; has no effect otherwise.

RESET_SENS_B In 1 External reset pin for the sensor subsystem. Active low. Can be
used to hold the subsystem in reset even when the chip reset pin
(RESET_B) is deasserted.

8.5 Technical Details

8.5.1 Control and Access

The sensor array can be controlled via an off-chip interface by manipulating three chip input pins. Alternatively, it
can be controlled by writing to a control register from one of the on-chip processors. Only one of the two interfaces
can be actively controlling the sensor array at one time; the selected interface is determined by a control register
bit. When the chip is reset, the default is to use the off-chip interface.

Sensor array data can be observed at either of the two interfaces, even though the array is controlled via a single
interface. Serial data can be driven out through an output pin on the off-chip interface, and a parallel data can be
read from a register via the on-chip interface.

8.5.2 Address Map

Table 8.2: Sensor Array Address Map

Address Description

0x30000000 Sensor Array Control Register
0x30000004 Sensor Array Timer Register
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8.5.3 Register Descriptions

Note: writes to the registers only have an effect when SENS_IN = 1 and SENS_SCAN_EN = 0.

Table 8.3: Sensor Array Control Register

Bit number Access Description

[31:24] n/a Reserved
[23:19] r Scan count. Automatically set to 01111b when the Advance Scan Chain bit is

written with a 1; decrements as the scan chain is advanced.
18 n/a Reserved
17 r/w Interface Select. 0: off-chip inputs are enabled (IN, SCAN_EN, PWM); 1: on-

chip signals are enabled (control register scan data, internal scan enable, timer-
generated PWM)

16 r/w Advance Scan Chain.
15 r/w Scan data. When used as configuration data to be scanned in to a sensor node,

this bit represents Bypass Scan Chain. 1 = only a single bit (bit 15) of the node’s
16-bit register will be included in the next scan operation; 0 = all 16 bits of the
node’s register will be included in the next scan operation. When reading result
data after advancing the scan chain, this is part of the 16 bits of scan data.

[14:12] r/w Scan data. When reading result data after advancing the scan chain, this is part of
the 16 bits of scan data. This field is a don’t-care when writing configuration data
to be scanned in to a sensor node.

11 r/w Scan data. When used as configuration data to be scanned in to a sensor node,
this bit represents Enable 16-Inverter Chain. 1 = the optional 16-inverter chain is
included in the ring oscillator path. When reading result data after advancing the
scan chain, this is part of the 16 bits of scan data.

10 r/w Scan data. When used as configuration data to be scanned in to a sensor node,
this bit represents Enable 8-Inverter Chain. 1 = the optional 8-inverter chain is
included in the ring oscillator path. When reading result data after advancing the
scan chain, this is part of the 16 bits of scan data.

9 r/w Scan data. When used as configuration data to be scanned in to a sensor node,
this bit represents Enable 4-Inverter Chain. 1 = the optional 4-inverter chain is
included in the ring oscillator path. When reading result data after advancing the
scan chain, this is part of the 16 bits of scan data.

8 r/w Scan data. When used as configuration data to be scanned in to a sensor node,
this bit represents Enable 2-Inverter Chain. 1 = the optional 2-inverter chain is
included in the ring oscillator path. When reading result data after advancing the
scan chain, this is part of the 16 bits of scan data.

7 r/w Scan data. When used as configuration data to be scanned in to a sensor node,
this bit represents NBTI Chain 1 Bias Value. 1 = unstressed state; 0 = stressed
state. This bit must be set to 0 temporarily in order to sample the ring oscillator
with NBTI Chain 1 in the path. When reading result data after advancing the scan
chain, this is part of the 16 bits of scan data.

6 r/w Scan data. When used as configuration data to be scanned in to a sensor node,
this bit represents NBTI Chain 2 Bias Value. 1 = unstressed state; 0 = stressed
state. This bit must be set to 0 temporarily in order to sample the ring oscillator
with NBTI Chain 2 in the path. When reading result data after advancing the scan
chain, this is part of the 16 bits of scan data.

5 r/w Scan data. When used as configuration data to be scanned in to a sensor node,
this bit represents Measure NBTI Chain 1. 1 = the optional NBTI chain 1 is included
in the ring oscillator path. When reading result data after advancing the scan chain,
this is part of the 16 bits of scan data.
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Table 8.3: Sensor Array Control Register

Bit number Access Description

4 r/w Scan data. When used as configuration data to be scanned in to a sensor node,
this bit represents Measure NBTI Chain 2. 1 = the optional NBTI chain 2 is included
in the ring oscillator path (requires that Measure NBTI Chain 1 be deasserted).
When reading result data after advancing the scan chain, this is part of the 16 bits
of scan data.

3 r/w Scan data. When reading result data after advancing the scan chain, this is part of
the 16 bits of scan data. This field is a don’t-care when writing configuration data
to be scanned in to a sensor node.

2 r/w Scan data. When used as configuration data to be scanned in to a sensor node,
this bit represents Ring Oscillator Enable (active low). 1 = ring oscillator stays off
during PWM assertions; 0 = ring oscillator turns on during PWM assertions. When
reading result data after advancing the scan chain, this is part of the 16 bits of scan
data.

1 r/w Scan data. When used as configuration data to be scanned in to a sensor node,
this bit represents Select Clock from Upstream. 1 = the daisy chain input is used
as a clock for the node’s counter; 0 = the local ring oscillator is used as the clock
for the node’s counter. When reading result data after advancing the scan chain,
this is part of the 16 bits of scan data.

0 r/w Scan data. When used as configuration data to be scanned in to a sensor node,
this bit represents the Output Mode Select. 1 = the node’s ring oscillator signal is
propagated; 0 = the node’s daisy chain input is propagated. When reading result
data after advancing the scan chain, this is part of the 16 bits of scan data.

Note: after advancing the scan chain by one sensor node position, bits [15:0] typically represent the 16-bit ring
oscillator count from one sensor node. An exceptional case is when one or more nodes has been bypassed from
the scan chain; in that case some nodes will only have 1 bit in the scan data, and thus ring oscillator counts will
not always line up with the 16-bit field in the register.

Table 8.4: Sensor Array Timer Register

Bit number Access Description

[31:0] r/w Timer value. Represents the current value of the decrementing
timer. A non-zero timer value causes the internal PWM signal to
be asserted as long as the timer value is non-zero. The internal
PWM signal is used by the sensors, provided the sensor array is
under control of the internal signals (as dictated by the Interface
Select bit in the Control Register). The timer value is set by a
write to this register; subsequently the value automatically decre-
ments each clock cycle if greater than 0. The value stops at 0
and the internal PWM signal deasserts.

8.5.4 Sensor Node Design and Operation

The basic sequence of operation involves scanning in a configuration for the sensor array (e.g., specifying which
ring oscillators to sample and in which modes), sampling the frequency of one or more ring oscillators over a
deterministic period, and then scanning out the data. Scanning out data and scanning in the next configuration
can be performed simultaneously.

When using the off-chip interface, data is scanned in through the SENS_IN pin. When using the on-chip interface,
data is scanned by writing a configuration value for a single sensor node at a time. Scanning the entire N-node

Information Sciences Institute 22



Chapter 8 | Sensor Subsystem Errata ITAG TA1A Answer Key

Figure 8.2: Operational concept of the sensor node

array requires N register writes. After each write, the sensor array control logic advances the daisy chain by 1
word.

The sensor array is accessed by scanning the daisy chain at the system clock frequency. To improve the sample
rates, the logic design allows individual sensor nodes to be bypassed when scanning. In bypass mode there is
just one cycle of delay through the node. The minimum time to scan in a new configuration and simultaneously
scan out the previous result is tmin_scan = (N - 1 + M) tclk, where N - 1 sensor nodes are bypassed, M is the width
of the counter in the activated node, and tclk is the system clock period. As an example, with 16 nodes, 16-bit
counters, and a 10 ns period, the scan overhead is tmin_scan = (16 - 1 + 16)(10 ns) = 310 ns.

The total time required for a sample is the time to scan plus the PWM period plus a small amount of dead time
in between each step (e.g. to allow time for the PWM signal to be synchronized to the ring oscillator clock). The
minimum total time is approximately 400 ns, assuming an extremely narrow PWM period. This corresponds to a
maximum rate of 2.5M samples/s.

8.5.5 Programmable Ring Oscillator

The basic concept for the programmable ring oscillator is shown in Figure 8.3. It includes a programmable inverter
chain and a negative-bias temperature instability (NBTI) instrument. The oscillator can be configured as desired
and then activated for the desired sample period.

The inverter chain can be configured for any even number of stages between 0 and 30:
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Figure 8.3: Programmable ring oscillator

Figure 8.4: Selectable number of inverter stages

8.5.6 NBTI Instrument and Measurements

The NBTI instrument consists of two chains of gates which can be independently biased, allowing differential
measurements of NBTI degradation. The chains consist of minimum-sized OR-AND-INVERT cells (oai21_1x);
this type of cell allows one PMOS device per cell to be fully controlled while a string of cells are chained together.
For a competing method, see “Ring oscillator circuit structures for measurement of isolated NBTI/PBTI effects,”
Kim et al., IEEE International Conference on Integrated Circuit Design and Technology, 2008. The method by Kim
et al. uses NOR gates but does not provide full control; the topology allows NBTI effects to be separated from
PBTI effects, but causes half of the PMOS devices under test to be negatively biased even when the circuit is in
the least stressed state. Our design allows the DUTs to be configured for all stress, no stress, or measurement
mode. Transistor-level views of an OAI gate are shown in Figure 8.5, showing the configurations used to stress,
unstress, and measure the PMOS transistor under test.

A gate-level view of the instrument is shown in Figure 8.6. This example shows just four oai21_1x gates per chain;
the actual number is 10.

In normal mode, the chains are bypassed from the ring oscillator path and are held in either a stressed or un-
stressed state. During this static bias, the ring oscillator can still be used without the NBTI instrument (note in
Figure 8.6 that the “from oscillator path” can be driven directly to the output through a mux). The wearout can be
accelerated by externally controlling the core voltage and/or the temperature. In measurement mode, one of the
chains is inserted into the ring oscillator path so that wearout can inferred via the ring oscillator frequency. During
measurement mode, half of the oscillator pulses will traverse the PMOSes in the odd-numbered gates, and the
other half will traverse the PMOSes in the even-numbered gates. To help isolate the effect, the remainder of the
ring oscillator can be configured to be very short (e.g. 2 inverters instead of 30), so that the chain makes up a
significant portion of the overall ring delay.
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Figure 8.5: Stressed configuration (upper left); unstressed configuration (upper right); measurement configuration
(lower center)

Figure 8.6: NBTI instrument

Information Sciences Institute 25



Chapter 9 | AXI4 Interconnect Errata ITAG TA1A Answer Key Section 9.3 | Technical Details

9 AXI4 Interconnect Errata

9.1 Errata

Erratum 109: A collection of subsystem run-time performance monitors was inserted into the test article.

9.2 I/O Description

Erratum 109: The following I/O pins were added to the AXI4 Interconnect.

Table 9.1: Subsystem I/O Signals (Added)

Signal In/Out Width Description

axi_ports_empty Out 7 AXI Interconnect Input FIFO empty signal
axi_ports_full Out 7 AXI Interconnect Input FIFO full signal
axi_ports_valid Out 7 AXI Interconnect Input FIFO valid signal
axi_ports_ready Out 7 AXI Interconnect Input FIFO ready signal

9.3 Technical Details

Erratum 109: Each input port’s FIFO status signals in the AXI interconnect are routed to the Thermal Classifier
Subsystem. More details regarding the monitor of the FIFO signals can be found in Chapter 3.
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10 Package Errata

10.1 Errata

Erratum 110: An extra I/O pin was added to force the Memory Controller subsystem into passthrough mode.

Erratum 107: An array of 16 ring oscillator sensors was inserted into the test article.

10.2 Pad Frame

Errata 107 and 110: Six I/O pins were added in support of the Sensor subsystem and the Memory Controller
passthrough mode.

Table 10.1: TA1A Pad Frame

Signal Edge CCW Pad

SENS_SCAN_EN W 66 M10
SENS_PWM W 71 N9
SENS_OUT W 72 N10
SENS_IN W 73 N11
RESET_SENS_B W 76 P8

MEM_PASS_MODE S 135 A15
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0 Preface

0.1 Overview

The ITAG Phase 1 Thrust 1B Test Article (TA1B) is a System-on-Chip (SoC) netlist developed by USC Information
Sciences Institute in support of the DARPA Integrity and Reliability of Integrated Circuits (IRIS) Thrust 1B.

This document describes differences between the delivered TA1B test article and the corresponding datasheet
released to IRIS performers.

0.2 Errata List

Each difference between the TA1B test article and datasheet is listed below and numbered according to the ITAG
internal tracking number.

548: Modification to Interconnect Port Scheduling. The AXI4S interconnect uses Round Robin arbitration with
priority given to higher port numbers. This erratum is described in Section 9.3.2.

549: Expanded ARM JTAG Capability. The JTAG interface can be used to read and write the ARM program
counter. This erratum is described in Section 2.3.3.

550: GSM A5/1 Stream Cypher. A GSM A5/1 cypher core was attached to the ARM coprocessor. This erratum is
described in Section 2.3.4.

551: Performance Monitors. A collection of subsystem runtime performance monitors was inserted into the test
article. This erratum is described in Chapter 3 (sections 3.2, 3.3, and 3.4.2), and sections 2.2, 2.3.1, 9.2,
and 9.3.1.

552: I/O Pin for VGA Resolution. An extra I/O pin was added to the test article to force the VGA subsystem into
high-resolution mode. This erratum is described in sections 1.2, 8.2, and 8.3.

553: I/O Pin for SVD Result Order. An extra I/O pin was added to the test article to change the order of the SVD
subsystem results. This erratum is described in sections 1.2, 3.3, and 3.4.1.

554: I/O Pin for Memory Controller Passthrough Mode. An extra I/O pin was added to the test article to force the
Memory Controller subsystem into passthrough mode. This erratum is described in sections 1.2, 4.2, and
4.3.1.

555: Minor Modifications to ARM. One extra instruction and two extra coprocessor registers were added to the
ARM subsystem in the test article. This erratum is described in sections 2.3.1 and 2.3.2.

762: Address Pin Count Mismatch. The address pin count for the system and for the Memory Controller subsys-
tem is 28 instead of 24. This erratum is described in sections 1.2 and 4.2.
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1 System Errata

1.1 Errata

Erratum 549: The JTAG interface can be used to read and write the ARM program counter.

Erratum 550: The LFSR-based pseudo-random number generator for the GSM A5/1 encryption core was attached
as an ARM coprocessor.

Erratum 551: A collection of subsystem runtime performance monitors was inserted into the test article.

Erratum 552: An extra I/O pin was added to the test article to force the VGA subsystem into high-resolution mode.

Erratum 553: An extra I/O pin was added to the test article to change the order of the SVD subsystem results.

Erratum 554: An extra I/O pin was added to force the Memory Controller subsystem into passthrough mode.

Erratum 555: One extra instruction and two extra coprocessor registers were added to the ARM subsystem in the
test article.

Erratum 762: The address pin count for the system and for the Memory Controller subsystem is 28 instead of 24.

1.2 I/O Description

Errata 552, 553, and 554: The following I/O pins were added to the test article:

Table 1.1: Chip I/O Signals (Added)

Signal In/Out Width Description

Memory Controller

MEM_PASS_MODE In 1 Force Memory subsystem into passthrough mode

VGA

HIREZ_MODE In 1 Force VGA subsystem into high-resolution mode

Other

SVDDL_MODE In 1 Force SVD subsystem to change order of results

Erratum 762: The following I/O signal width was corrected:

Table 1.2: Chip I/O Signals (Corrected)

Signal In/Out Width Description

Memory Controller

MEM_ADDR Out 28 Memory address
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2 ARM Subsystem Errata

2.1 Errata

Erratum 549: The JTAG interface can be used to read and write the ARM program counter.

Erratum 550: A GSM A5/1 cypher core was attached to the ARM coprocessor.

Erratum 551: A collection of subsystem run-time performance monitors was inserted into the test article.

Erratum 555: One extra instruction and two extra coprocessor registers were added to the ARM subsystem in the
test article.

2.2 I/O Description

Errata 551: The following I/O pins were added to the ARM Subsystem.

Table 2.1: Subsystem I/O Signals (Added)

Signal In/Out Width Description

arm_cpuwait Out 1 ARM processor stall signal

2.3 Technical Details

2.3.1 ARM Core

Erratum 551: The ARM processor’s fetch stall signal is connected from the ARM subsystem to the SVD subsystem.
The processor stalls when it performs I/O transactions to memory. More details regarding the monitoring of the
ARM processor’s cpuwait signal can be found in Chapter 3.

Erratum 555: A new bounded multiply operation MULB has been added to the ARM instruction set. The regular
MUL instruction treats the <Rd> opcode bits [15:12] as reserved, and requires that they be set to zero. When
<Rd> is non-zero, the processor instead executes the MULB instruction, and uses Rd as a bound on the result. If
the product exceeds the bound, the bound is returned instead of the product. In all other respects the MUL and
MULB instructions are identical, and MULB reduces to MUL when <Rd> is zero.

MULBcdS regD, RegA, RegB, RegC
Multiply RegA and RegB, bounded by RegC, and place into RegD. If RegC is r0, no bound is used, and the
operation is MULcdS.

RegD = ( RegA × RegB ) > RegC ? RegC : ( RegA × RegB )

Execute only if cd is true.
Set flags if S is specified.

2.3.2 ARM Control Registers

The ARM VL86C020 and derivative processors include control registers used for cache control and device identi-
fication. These control registers are accessible as built-in Coprocessor 15.
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Erratum 555: Coprocessor 15 Control Register 0 (Identity Register) can be written through the JTAG register
DATA_OUT, and read by the ARM. This allows the user to override the standard ARM v2 processor identification
code.

Erratum 555: Coprocessor 15 Control Register 1 (Cache Flush) is now an actual 32-bit register that can be written
by the ARM, and read through the JTAG register DATA_IN. This provides a debug mechanism, allowing the user to
share data on the JTAG port. Writing to Coprocessor 15 Control Register 1 still forces a cache flush as expected.

2.3.3 Wishbone Debug Interface

Erratum 549: The JTAG interface was extended to permit reading and writing the ARM program counter. The new
JTAG instructions are shown in Table 2.2.

Table 2.2: AVR JTAG Instruction Register (Added)

Address Name Data Width Description

0x10 BSCANO 32 Write ARM program counter
0x11 BSCANI 32 Read ARM program counter

2.3.4 GSM A5/1 Stream Cypher

Erratum 550: This entire subsection has been added as an erratum.

A GSM A5/1 stream cyper core is attached to the ARM core through Coprocessor 15. This core is used to create
a keystream that can be used to encrypt plain text. The cypher core implements GSM A5/1 to produce a running
keystream by XORing the most significant bits of 3 Linear Feedback Shift Registers (LFSRs). The core can reset
its contents and then accept a 64-bit externally supplied secret session key and a 22-bit frame number to prepare
for keystream generation. During the preparation process, the least significant bit of each LFSR is XORed with
a corresponding bit from the secret session key, and after that with a corresponding bit from the frame number.
During this preparation phase, all LFSRs operate continuously with regular clocking. The eight possible modes of
the 3-bit address port can be used for the purpose of loading the secret session key and frame number.

Once the secret session key and frame number have been loaded into the LFSRs, the address lines can be used
to place the core in keystream generation mode to produce a pair of 114-bit keystreams. These keystreams are
grouped into 32-bit words, and accessed by the ARM core through the Coprocessor 15 interface.

During the A5/1 keystream generation phase the core uses a combination of the three LFSRs operated in an
irregular clocking scheme to iteratively generate 3 separate sequences of bits, which are then XORed to generate
a bit of keystream per clock cycle. The A5/1 LFSR parameters are shown in Table 2.3. LFSRs whose clocking
bit equals the majority value of all clocking bits will shift their contents. If any of the LFSRs does not match the
majority value, it is stalled until its clock bit equals the majority value.

Table 2.3: GSM A5/1 Parameters

LFSR Length Feedback Polynomial Clocking Bit

1 19 x19+x18+x17+x14 + 1 8
2 22 x22+x21 + 1 10
3 23 x23+x22+x21+x8 + 1 10

The A5/1 algorithm requires three LFSRs of bit lengths 19, 22, and 23, but the design implements them using
three 32 bit registers, with the lengths of the LFSRs being initialized prior to keystream generation. Consequently,
each bit holding and bit manipulating function associated with each bit position in the LFSRs is designed as
a generic unit-block circuit. Through the use of several control signals, a unit-block can operate in regular or
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irregular clocking modes and can appropriately XOR its contents with a value received from polynomial evaluation
performed on more significant bits. This means that the core can also be used as a pseudo-random number
generator, by initializing the LFSR lengths, polynomials, and clocking bits.

The core is connected to the ARM core via a 32-bit coprocessor interface. It is the responsibility of the software
on the ARM core to appropriately load and use the two 114-bit keystream pairs. In addition, the module has a
3-bit address port and a read/write strobe signal interface with the coprocessor. Once a keystream has been
generated, the plaintext encryption can be done outside the core.

The A5/1 core is initialized by writing to Coprocessor 15 register CR6. Keystream data is obtained from the core by
reading from Coprocessor 15 register CR8. These registers use self-incrementing counters, so data must always
be written to or read from them in groups of eight words. The initialization data sequence is presented in Table 2.4,
and the keystream data sequence is presented in Table 2.5.

Table 2.4: Initialization Sequence: Coprocessor 15 Register CR6

Index Bits Description

0 [7:0] LFSR 0 length
0 [15:8] LFSR 1 length
0 [23:16] LFSR 2 length
0 [31:24] Reserved
1 [31:0] LFSR 0 polynomial
2 [31:0] LFSR 1 polynomial
3 [31:0] LFSR 2 polynomial
4 [3:0] LFSR 0 clocking bit
4 [7:4] LFSR 1 clocking bit
4 [11:8] LFSR 2 clocking bit
4 [31:12] Reserved
5 [31:0] LFSR 0 session key
6 [31:0] LFSR 1 session key
7 [21:0] LFSR 2 session key

Table 2.5: Keystream Sequence: Coprocessor 15 Register CR8

Index Description

0 Keystream 0 bits [31:0]
1 Keystream 0 bits [63:32]
2 Keystream 0 bits [95:64]
3 Keystream 0 bits [127:96]
4 Keystream 1 bits [31:0]
5 Keystream 1 bits [63:32]
6 Keystream 1 bits [95:64]
7 Keystream 1 bits [127:96]
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3 SVD Subsystem Errata

3.1 Errata

Erratum 551: A collection of subsystem run-time performance monitors was inserted into the test article.

Erratum 553: An extra I/O pin was added to the test article to change the order of the SVD subsystem results.

3.2 Block Diagram

Erratum 551: The following block diagram reflects the modifications made to the SVD subsystem.
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Figure 3.1: SVD Subsystem Block Diagram

3.3 I/O Description

Errata 551 and 553: The following I/O pins were added to the SVD subsystem.

Table 3.1: Subsystem I/O Signals (Added)

Signal In/Out Width Description

arm_cpuwait In 1 ARM processor stall signal
axi_ports_empty In 8 AXI Interconnect Input FIFO empty signal
axi_ports_full In 8 AXI Interconnect Input FIFO full signal
axi_ports_valid In 8 AXI Interconnect Input FIFO valid signal
axi_ports_ready In 8 AXI Interconnect Input FIFO ready signal

SVDDL_MODE In 1 Force SVD subsystem to change order of results
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3.4 Technical Details

3.4.1 SVD Reordering

Erratum 553: If the device I/O SVDDL_MODE pin is driven high, the selection of Σ and U vectors is swapped
when read back from the core. Details are shown in Table 3.2.

Table 3.2: SVD Addressing and Control

Address Bits [32:10] [9:8] [7:6] [5:1] [0] Description

SVDDL_MODE = 0

0010 0100 0000 0000 00 00 01 [row] 0 Read Σ Vector S[31:0]
0010 0100 0000 0000 00 00 01 [row] 1 Read Σ Vector S[63:32]
0010 0100 0000 0000 00 00 10 [row] 0 Read Left Singular Vector U[31:0]
0010 0100 0000 0000 00 00 10 [row] 1 Read Left Singular Vector U[63:32]

SVDDL_MODE = 1

0010 0100 0000 0000 00 00 01 [row] 0 Read Left Singular Vector U[31:0]
0010 0100 0000 0000 00 00 01 [row] 1 Read Left Singular Vector U[63:32]
0010 0100 0000 0000 00 00 10 [row] 0 Read Σ Vector S[31:0]
0010 0100 0000 0000 00 00 10 [row] 1 Read Σ Vector S[63:32]

3.4.2 Performance Monitors Infrastructure

Erratum 551: This entire subsection has been added as an erratum.

The performance monitor infrastructure provides run-time system information. The information can be collected
and used by a designer to better understand the system performance under various loads and conditions. The
system uses individual cores to monitor the ARM processor, AVR processor, and AXI4S interconnect. A designer
can enable or disable monitoring and capture or reset each monitor core’s data. The monitoring infrastructure is
composed of the following blocks:

• Performance Monitor Interface

• Performance Monitor Hub

• ARM Performance Monitor Core

• AVR Performance Monitor Core

• AXI4S Interconnect Monitor Core

The ARM subsystem and the AXI4S interconnect are separate from the SVD subsystem, but their monitoring
cores reside within the SVD subsystem. Figure 3.1 shows the performance monitor infrastructure integrated into
the SVD subsystem, including the subsystem I/O ports added for external monitoring of the ARM subsystem and
AXI4S interconnect.

3.4.2.1 Performance Monitor Interface

The system interacts with the Performance Monitor through the Performance Monitor Interface. An additional port
was added to Subsystem Interface Controller (SIC) interconnect. This port connects to the Performance Monitor
Interface at address 0x25000000. The interface also adds separate 16-element deep FIFOs on the transmit and
receive ports to buffer commands and data going to and from the system.

3.4.2.2 Performance Monitor Hub

The Performance Monitor Hub aggregates commands from the system and passes them on to the specified
performance monitor core. Table 3.3 defines the supported commands.
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Table 3.3: Performance Monitor Commands

Command Description

0x0 Retrieve all data from all performance monitors
0x1 Retrieve all data from a specific performance monitor
0x2 Retrieve a specific data word from all performance monitors
0x3 Retrieve a specific data word from one performance monitor
0x4 Reset data for all performance monitors
0x5 Reset data for a specific performance monitor
0x6 Enable data collection for all performance monitors
0x7 Enable data collection for a specific performance monitor
0x8 Disable data collection for all performance monitors
0x9 Disable data collection for a specific performance monitor

Table 3.4 enumerates the performance monitor cores. These numbers can be combined with commands to
designate a specific performance monitor.

Table 3.4: Performance Monitor Cores Numeric Representation

Number Core Name

0 AVR Processor Performance Monitor
1 ARM Processor Performance Monitor
2 AXI Interconnect Performance Monitor

Table 3.5 describes the Performance Monitor Hub Command Register at address 0x25000000.

Table 3.5: Performance Monitor Hub Command Register

Bit number Access Description

[31:12] — Reserved
[11:8] w Monitor number (Table 3.4)
[7:4] — Reserved
[3:0] w Command (Table 3.3)

After a command is issued, the resulting data can be read from address 0x25000000. The data returned depends
on the command that was issued. The first word of data indicates how many monitors are included in the results.
Then for each monitor, the number of data words, followed by the actual data words are returned. A simple C
program with a double-nested loop can be used to iterate over each monitor and then over each datum.

3.4.2.3 ARM Performance Monitor Core

The ARM performance monitor core receives input signal arm_cpuwait. When the arm_cpuwait signal is high, the
ARM processor is stalled and waiting for data. When enabled, the monitor core counts the number of clock cycles
the arm_cpuwait signal is active. Combined with the total run-time of the ARM subsystem, a user can quickly
understand the utilization of the processor core. The performance monitor infrastructure allows this information to
be collected at run-time and to be enabled, disabled, or reset at the user’s discretion.

The ARM monitor includes two 64-bit timers. Timer 0 measures the idle time when arm_cpuwait is asserted.
Timer 1 measures the active run time, when arm_cpuwait is not asserted. The monitor data is described in
Table 3.6.
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Table 3.6: ARM Performance Monitor Core’s Data Order

Word Description

0 Timer 0: ARM processor idle timer [31:0] data
1 Timer 0: ARM processor idle timer [63:32] data
2 Timer 1: ARM processor run timer [31:0] data
3 Timer 1: ARM processor run timer [63:32] data

3.4.2.4 AXI4S Interconnect Performance Monitor Core

The AXI4S interconnect performance monitor core receives inputs axi_port_empty, axi_port_full, axi_port_valid,
and axi_port_ready. These signals reflect the AXI4S interconnect input FIFO status. The ports in the TA1B
interconnect each have FIFOs to buffer incoming data. The FIFO status is useful for understanding the utilization of
the interconnect and the load distribution of an application on the system. The performance monitor infrastructure
allows this information to be collected at run-time and to be enabled, disabled, or reset at the user’s discretion.

The AXI4S monitor data includes one 32-bit word indicating the status of the input FIFOs. The AXI4S interconnect
has 8 ports. The status information is divided into four groups as shown in Table 3.7. Within each group the bit
position corresponds to the port number.

Table 3.7: AXI4S Interconnect Status Register

Bit number Access Description

[31:24] r AXI4S input FIFO ready signals
[23:16] r AXI4S input FIFO valid signals
[15:8] r AXI4S input FIFO full signals
[7:0] r AXI4S input FIFO empty signals

3.4.2.5 AVR Performance Monitor Core

The AVR performance monitor core receives inputs avr_cpuwait, avr_pc, and avr_inst. When the avr_cpuwait
signal is high, the AVR processor is stalled and waiting for data. When enabled, the monitor core counts the
number of clock cycles the avr_cpuwait signal is active. Combined with the total run-time of the AVR subsystem, a
user can quickly understand the utilization of the processor core. The monitor can also capture the current value
of the program counter and the current instruction that is being executed. The performance monitor infrastructure
allows this information to be collected at run-time and to be enabled, disabled, or reset at the user’s discretion.

The AVR monitor includes two 64-bit timers and two 32-bit words for the program counter and current instruction.
Timer 0 measures the idle time when the avr_cpuwait signal is asserted. Timer 1 measures the active run time,
when the avr_cpuwait signal is not asserted. The monitor data is described in Table 3.8.

Table 3.8: AVR Performance Monitor Core’s Data Order

Word Description

0 Timer 0: AVR processor idle timer [31:0] data
1 Timer 0: AVR processor idle timer [63:32] data
2 Timer 1: AVR processor run timer [31:0] data
3 Timer 1: AVR processor run timer [63:32] data
4 AVR processor program counter
5 AVR processor instruction register
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4 Memory Controller Subsystem Errata

4.1 Errata

Erratum 554: An extra I/O pin was added to force the Memory Controller subsystem into passthrough mode.

Erratum 762: The address pin count for the system and for the Memory Controller subsystem is 28 instead of 24.

4.2 I/O Description

Errata 554: The following I/O pins was added to the test article:

Table 4.1: Subsystem I/O Signals (Added)

Signal In/Out Width Description

MEM_PASS_MODE In 1 Force Memory subsystem into passthrough mode

Erratum 762: The following I/O signal width was corrected:

Table 4.2: Subsystem I/O Signals (Changed)

Signal In/Out Width Description

MEM_ADDR Out 28 Off-chip memory address. Provides the base address (or the start
address in case of a burst) of the data to be accessed.

4.3 Technical Details

4.3.1 Passthrough Mode

Erratum 554: The Memory Controller subsystem can be forced into Passthrough mode by driving the device I/O
MEM_PASS_MODE pin high. The documented method of entering Passthrough mode by asserting the ACK
signal and holding the two MSBs of MEM_DATA_IN high also remains valid.
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5 SPI Subsystem Errata

5.1 Errata

No errata exist for this subsystem.
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6 I2C Subsystem Errata

6.1 Errata

No errata exist for this subsystem.
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7 UART Subsystem Errata

7.1 Errata

No errata exist for this subsystem.
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8 VGA Subsystem Errata

8.1 Errata

Erratum 552: An extra I/O pin was added to the test article to force the VGA subsystem into high-resolution mode.

8.2 I/O Description

Erratum 552: The following I/O pin was added to the SVD Subsystem.

Table 8.1: Subsystem I/O Signals (Added)

Signal In/Out Width Description

HIREZ_MODE In 1 Force VGA subsystem into high-resolution mode

8.3 Technical Details

Erratum 552: If the device I/O HIREZ_MODE pin is driven high, the VGA subsystem is forced into high-resolution
800×600 mode, regardless of register settings.
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9 AXI4 Interconnect Errata

9.1 Errata

Erratum 548: The AXI4S interconnect uses Round Robin arbitration with priority given to higher port numbers.

Erratum 551: A collection of subsystem run-time performance monitors was inserted into the test article.

9.2 I/O Description

Errata 551: The following I/O pins were added to the AXI4 Interconnect.

Table 9.1: Subsystem I/O Signals (Added)

Signal In/Out Width Description

axi_ports_empty Out 8 AXI Interconnect Input FIFO empty signal
axi_ports_full Out 8 AXI Interconnect Input FIFO full signal
axi_ports_valid Out 8 AXI Interconnect Input FIFO valid signal
axi_ports_ready Out 8 AXI Interconnect Input FIFO ready signal

9.3 Technical Details

9.3.1 Crossbar Switch

Erratum 551: Each input port’s FIFO status signals in the AXI interconnect are routed to the SVD subsystem.
More details regarding the monitor of the FIFO signals can be found in Chapter 3.

9.3.2 Arbitration

Erratum 548: If multiple requests for the same output port reach the arbiter during the same clock cycle, priority is
given to the request with the highest port number. All other requests will be enqueued and prioritized from highest
to lowest port number.
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0 Preface

0.1 Overview

The ITAG Phase 1 Thrust 3A Test Article (TA3A) is a soft IP System-on-Chip (SoC) developed by USC Information
Sciences Institute in support of the DARPA Integrity and Reliability of Integrated Circuits (IRIS) Thrust 3A. This
soft IP is intended for implementation in an ASIC.

This document describes differences between the delivered TA3A test article and the corresponding datasheet
released to IRIS performers.

0.2 Errata List

Each difference between the TA3A test article and datasheet is listed below and numbered according to the ITAG
internal tracking number.

591: Extra AXI4S Interconnect Port. An extra port was added to the AXI4S interconnect for system expansion.
This erratum is described in Section 1.3, 6.2, and 6.3.1.

592: Cryptographic Subsystem Bypass Mode. The encryption feature can be disabled. This erratum is described
in Section 5.4.1.1 and 5.4.2.

593: Network Routing Arbitration. The AXI4S interconnect uses Round Robin arbitration with priority given to
higher port numbers. This erratum is described in Section 6.3.2.

595: Performance Monitors. A collection of subsystem runtime performance monitors was inserted into the test
article. This erratum is described in Chapter 5 (sections 5.2, 5.3, and 5.4.3) and sections 2.2 and 2.3.1.

601: Writable UART Counters. Writable UART counters were inserted into the test article to allow runtime baud
rate adjustments. This erratum is described in Section 1.2 and 4.2.

762: Address Pin Count Mismatch. The address pin count for the system and for the Memory Controller subsys-
tem is 28 instead of 24. This erratum is described in sections 1.4 and 3.2.
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1 System Errata

1.1 Errata

Erratum 591: An extra port was added to the AXI4S interconnect for system expansion.

Erratum 601: Writable UART counters were inserted into the test article to allow runtime baud rate adjustments.

Erratum 762: The address pin count for the system and for the Memory Controller subsystem is 28 instead of 24.

1.2 Features

• Erratum 601: UART baud rates from 300 to 4,608,000

1.3 Block Diagram

Erratum 591: An extra port was added to the AXI4S interconnect for system expansion.

Figure 1.1: High-level block diagram of the TA3A System-on-Chip

1.4 I/O Description

Erratum 762: The following I/O signal width was corrected:

Table 1.1: Chip I/O Signals (Corrected)

Signal In/Out Width Description

Memory Controller

MEM_ADDR Out 28 Memory address
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2 ARM Subsystem Errata

2.1 Errata

Erratum 595: A collection of subsystem run-time performance monitors was inserted into the test article.

2.2 I/O Description

Erratum 595: The following I/O pins were added to the ARM Subsystem.

Table 2.1: Subsystem I/O Signals (Added)

Signal In/Out Width Description

arm_cpuwait Out 1 ARM processor stall signal

2.3 Technical Details

2.3.1 ARM Core

Erratum 595: The ARM processor’s fetch stall signal is connected from the ARM subsystem to the Cryptographic
subsystem. The processor stalls when it performs I/O transactions to memory. More details regarding the moni-
toring of the ARM processor’s cpuwait signal can be found in Chapter 5.
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3 Memory Controller Subsystem Errata

3.1 Errata

Erratum 762: The address pin count for the system and for the Memory Controller subsystem is 28 instead of 24.

3.2 I/O Description

Erratum 762: The following I/O signal width was corrected:

Table 3.1: Subsystem I/O Signals (Corrected)

Signal In/Out Width Description

MEM_ADDR Out 28 Off-chip memory address. Provides the base address (or the start
address in case of a burst) of the data to be accessed.
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4 Peripheral Subsystem Errata

4.1 Errata

Erratum 601: Writable UART counters were inserted into the test article to allow runtime baud rate adjustments.

4.2 Technical Details

Erratum 601: The UART supports operations to receive and transmit data, to get and set the baud rate, to get the
FIFO status, and to acquire, check, or release a mutex. The operation requested is determined by the read or
write address from Table 4.1.

Table 4.1: UART Address Summary

Address Description

0x22000000 Normal Operation
0x22000004 Get/Set Baud Low
0x22000008 Get/Set Baud High
0x2200000C Get FIFO Status
0x22000010 Check Mutex
0x22000110 Acquire Mutex
0x22000210 Release Mutex

Erratum 601: The UART baud rate is controlled by two 32-bit registers. The low 12 bits at address 0x22000004
set the baud frequency and the low 16 bits at address 0x22000008 set the baud limit. These registers together
set two internal counters that configure the baud clock.
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Erratum 601: The UART default baud rate is 57,600 bps. Table 4.2 shows the baud rate settings to use if the
system clock frequency is 50 MHz.

Table 4.2: UART Settings

Baud Rate baud_freq baud_limit

300 0x0003 0xF421
600 0x0003 0x7A0F

1,200 0x0003 0x3D06
2,400 0x0006 0x3D03
4,800 0x000C 0x3CFD
9,600 0x0018 0x3CF1

14,400 0x0024 0x3CE5
19,200 0x0030 0x3CD9
28,800 0x0048 0x3CC1
38,400 0x0060 0x3CA9
56,000 0x001C 0x0C19
57,600† 0x0090 0x3C79

115,200 0x0120 0x3BE9
128,000 0x0040 0x0BF5
153,600 0x0180 0x3B89
230,400 0x0240 0x3AC9
256,000 0x0080 0x0BB5
460,800 0x0480 0x3889
921,600 0x0900 0x3409

1,382,400 0x0D80 0x2F89
2,304,000 0x0480 0x07B5
4,608,000 0x0900 0x0335
†Default baud rate

Erratum 601: The baud settings in Table 4.2 can be calculated from the desired baud rate as follows:

Baud_freq =
16× baud_rate

gcd(system_clock_freq, 16× baud_rate)

Baud_limit =
system_clock_freq

gcd(system_clock_freq, 16× baud_rate)
− baud_freq
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5 Cryptographic Subsystem Errata

5.1 Errata

Erratum 592: The encryption feature can be disabled.

Erratum 595: A collection of subsystem run-time performance monitors was inserted into the test article.

5.2 Block Diagram

Errata 595: The following block diagram reflects the modifications made to the Cryptographic subsystem.
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Microcontroller 

AXI4S Interface 

Data 
Memory 

Control 
Registers 

Subsystem 
Interface 
Controller 

Interconnect 

!"#$%$&'()*+&',-./')01+&,122',)
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ZPU 
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Performance 
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:',-1,(.+/')71+8&1,)*+-,.$&,"/&",')

Figure 5.1: Cryptographic Subsystem Block Diagram

5.3 I/O Description

Errata 595: The following I/O pins were added to the Cryptographic Subsystem.

Table 5.1: Subsystem I/O Signals (Added)

Signal In/Out Width Description

arm_cpuwait In 1 ARM processor stall signal

5.4 Technical Details

5.4.1 Subsystem Interface Controller

5.4.1.1 SIC Control Registers

Erratum 592: The following select bits were corrected. When the select bits are set to either 10 or 11 for bypass
mode, data encryption is disabled.
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Table 5.2: Remote Request Register (Corrected)

Bit number Access Description

[31:18] — Reserved
[17:16] r/w Crypto Core algorithm select

(00 = JH, 01 = Blake, 10/11 = Bypass) [default:00]

5.4.2 Crypto Core

Erratum 592: Before using the Crypto core to generate a hash for a message, the user must select the proper
algorithm for data encryption. Write 0x00010000 for Blake, 0x00000000 for JH, or 0x00020000 or 0x00030000 for
bypass to the SIC Remote Request Register at address 0x32000010. JH is selected by default.

5.4.3 Performance Monitors Infrastructure

Erratum 595: This entire subsection has been added as an erratum.

The performance monitor infrastructure provides run-time system information. The information can be collected
and used by a designer to better understand the system performance under various loads and conditions. The
system uses individual cores to monitor the ARM processor and ZPU processor. A designer can enable or disable
monitoring and capture or reset each monitor core’s data. The monitoring infrastructure is composed of the
following blocks:

• Performance Monitor Interface

• Performance Monitor Hub

• ARM Performance Monitor Core

• ZPU Performance Monitor Core

The ARM subsystem is separate from the Cryptographic subsystem, but its monitoring core resides within the
Cryptographic subsystem. Figure 5.1 shows the performance monitor infrastructure integrated into the Crypto-
graphic subsystem, including the subsystem I/O port added for external monitoring of the ARM subsystem.

5.4.3.1 Performance Monitor Interface

The system interacts with the Performance Monitor through the Performance Monitor Interface. An additional port
was added to Subsystem Interface Controller (SIC) interconnect. This port connects to the Performance Monitor
Interface at address 0x34000000. The interface also adds separate 16-element deep FIFOs on the transmit and
receive ports to buffer commands and data going to and from the system.

5.4.3.2 Performance Monitor Hub

The Performance Monitor Hub aggregates commands from the system and passes them on to the specified
performance monitor core. Table 5.3 defines the supported commands.

Table 5.3: Performance Monitor Commands

Command Description

0x0 Retrieve all data from all performance monitors
0x1 Retrieve all data from a specific performance monitor
0x2 Retrieve a specific data word from all performance monitors
0x3 Retrieve a specific data word from one performance monitor
0x4 Reset data for all performance monitors
0x5 Reset data for a specific performance monitor
0x6 Enable data collection for all performance monitors
0x7 Enable data collection for a specific performance monitor
0x8 Disable data collection for all performance monitors
0x9 Disable data collection for a specific performance monitor
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Table 5.4 enumerates the performance monitor cores. These numbers can be combined with commands to
designate a specific performance monitor.

Table 5.4: Performance Monitor Cores Numeric Representation

Number Core Name

0 ZPU Processor Performance Monitor
1 ARM Processor Performance Monitor

Table 5.5 describes the Performance Monitor Hub Command Register at address 0x34000000.

Table 5.5: Performance Monitor Hub Command Register

Bit number Access Description

[31:12] — Reserved
[11:8] w Monitor number (Table 5.4)
[7:4] — Reserved
[3:0] w Command (Table 5.3)

After a command is issued, the resulting data can be read from address 0x34000000. The data returned depends
on the command that was issued. The first word of data indicates how many monitors are included in the results.
Then for each monitor, the number of data words, followed by the actual data words are returned. A simple C
program with a double-nested loop can be used to iterate over each monitor and then over each datum.

5.4.3.3 ARM Performance Monitor Core

The ARM performance monitor core receives input signal arm_cpuwait. When the arm_cpuwait signal is high, the
ARM processor is stalled and waiting for data. When enabled, the monitor core counts the number of clock cycles
the arm_cpuwait signal is active. Combined with the total run-time of the ARM subsystem, a user can quickly
understand the utilization of the processor core. The performance monitor infrastructure allows this information to
be collected at run-time and to be enabled, disabled, or reset at the user’s discretion.

The ARM monitor includes two 64-bit timers. Timer 0 measures the idle time when arm_cpuwait is asserted.
Timer 1 measures the active run time, when arm_cpuwait is not asserted. The monitor data is described in
Table 5.6.

Table 5.6: ARM Performance Monitor Core’s Data Order

Word Description

0 Timer 0: ARM processor idle timer [31:0] data
1 Timer 0: ARM processor idle timer [63:32] data
2 Timer 1: ARM processor run timer [31:0] data
3 Timer 1: ARM processor run timer [63:32] data

5.4.3.4 ZPU Performance Monitor Core

The ZPU performance monitor core receives inputs zpu_cpuwait, zpu_pc, and zpu_inst. When the zpu_cpuwait
signal is high, the ZPU processor is stalled and waiting for data. When enabled, the monitor core counts the
number of clock cycles the zpu_cpuwait signal is active. Combined with the total run-time of the ZPU subsystem,
a user can quickly understand the utilization of the processor core. The monitor can also capture the current value
of the program counter and the current instruction that is being executed. The performance monitor infrastructure
allows this information to be collected at run-time and to be enabled, disabled, or reset at the user’s discretion.
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The ZPU monitor includes two 64-bit timers and two 32-bit words for the program counter and current instruction.
Timer 0 measures the idle time when the zpu_cpuwait signal is asserted. Timer 1 measures the active run time,
when the zpu_cpuwait signal is not asserted. The monitor data is described in Table 5.7.

Table 5.7: ZPU Performance Monitor Core’s Data Order

Word Description

0 Timer 0: ZPU processor idle timer [31:0] data
1 Timer 0: ZPU processor idle timer [63:32] data
2 Timer 1: ZPU processor run timer [31:0] data
3 Timer 1: ZPU processor run timer [63:32] data
4 ZPU processor program counter
5 ZPU processor instruction register
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6 AXI4 Interconnect Errata

6.1 Errata

Erratum 591: An extra port was added to the AXI4S interconnect for system expansion.

Erratum 593: The AXI4S interconnect uses Round Robin arbitration with priority given to higher port numbers.

6.2 Block Diagram

Erratum 591: Extra port number 4 was added to the TA3A AXI4S interconnect as shown in Figure 6.1.

Figure 6.1: Block diagram of AXI4S switch

6.3 Technical Details

6.3.1 Crossbar Switch

Erratum 591: Extra port number 4 was added to the AXI4S Interconnect, so the crossbar is now a five port switch.

6.3.2 Arbitration

Erratum 593: If multiple requests for the same output port reach the arbiter during the same clock cycle, priority is
given to the request with the highest port number. All other requests will be enqueued and prioritized from highest
to lowest port number.
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0 Preface

0.1 Overview

The ITAG Phase 1 Thrust 3B Test Article (TA3B) is a soft IP System-on-Chip (SoC) developed by USC Information
Sciences Institute in support of the DARPA Integrity and Reliability of Integrated Circuits (IRIS) Thrust 3B. This
soft IP is intended for implementation in Xilinx Virtex6 and Virtex7 FPGAs.

This document describes differences between the delivered TA3B test article and the corresponding datasheet
released to IRIS performers.

0.2 Errata List

Each difference between the TA3B test article and datasheet is listed below and numbered according to the ITAG
internal tracking number.

594: GSM A5/1 Stream Cypher. A GSM A5/1 cypher core was attached to the ARM coprocessor. This erratum is
described in Section 2.3.2.

597: Mesh Routing Reconfiguration. Support for runtime reconfiguration of the AXI4 mesh interconnect. This
erratum is described in Chapter 4 (sections 4.2, 4.3, 4.4, 4.5, and 4.5.0.1) and Section 11.3.

598: Mesh Network Data Width. Changed the mesh network port width for the Hardware Control kernel to be 16
bits wide rather than 32 bits wide. This erratum is described in sections 7.2 and 11.3.

599: ZPU JTAG. The ZPU processor’s data memory is connected to the JTAG chain. This erratum is described
in sections 6.4.1 and 10.2.

600: Performance Monitors. A collection of subsystem runtime performance monitors was inserted into the test
article. This erratum is described in Chapter 4 (sections 4.3, 4.4, and 4.5.1) and sections 2.2, 2.3.1, 6.3,
6.4.1, 11.2, and 11.3.

602: Writable UART Counters. Writable UART counters were inserted into the test article to allow runtime baud
rate adjustments. This erratum is described in sections 1.2 and 5.2.

686: Cryptographic Subsystem Bypass Mode. The SHA-3 hash function can be bypassed. This erratum is
described in sections 6.4.2.1 and 6.4.3.

753: Skein Cryptographic Hash. The SHA-3 Skein candidate was added to the Cryptographic subsystem. This
erratum is described in sections 6.2, 6.4.2.1, and 6.4.3.1.

762: Address Pin Count Mismatch. The address pin count for the system and for the Memory Controller subsys-
tem is 28 instead of 24. This erratum is described in sections 1.4 and 3.2.
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1 System Errata

1.1 Errata

Erratum 602: Writable UART Counters. Writable UART counters were inserted into the test article to allow run-time
baud rate adjustments.

Erratum 762: Address Pin Count Mismatch. The address pin count for the system and for the Memory Controller
subsystem is 28 instead of 24.

1.2 Features

• Erratum 602: UART baud rates from 300 to 4,608,000

1.3 Block Diagram

Router 

On-Chip 
Memory 
Controller 
Subsystem 

Router 

JTAG 
Subsystem 

Router 

Peripheral 
Subsystem 

Router 

Crypto 
Subsystem 

Router 

Hardware 
Controller 
Subsystem 

Router 

Smart 
Memory 

Subsystem 

Router 

ARM 
Subsystem 

Router 

Maintenance 
Subsystem 

Router 

AVR  
Subsystem 

    

    

Figure 1.1: High-level block diagram of the TA3B System-on-Chip

1.4 I/O Description

Erratum 762: The following I/O signal width was corrected:

Table 1.1: Chip I/O Signals (Corrected)

Signal In/Out Width Description

Memory Controller

MEM_ADDR Out 28 Memory address
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2 ARM Subsystem Errata

2.1 Errata

Erratum 594: A GSM A5/1 cypher core was attached to the ARM coprocessor.

Erratum 600: A collection of subsystem run-time performance monitors was inserted into the test article.

2.2 I/O Description

Erratum 600: The following I/O pins were added to the ARM Subsystem.

Table 2.1: Subsystem I/O Signals (Added)

Signal In/Out Width Description

arm_cpuwait Out 1 ARM processor stall signal

2.3 Technical Details

2.3.1 ARM Core

Erratum 600: The ARM processor’s fetch stall signal is connected from the ARM subsystem to the SVD subsystem.
The processor stalls when it performs I/O transactions to memory. More details regarding the monitoring of the
ARM processor’s cpuwait signal can be found in Chapter 4.

2.3.2 GSM A5/1 Stream Cypher

Erratum 594: This entire subsection has been added as an erratum.

A GSM A5/1 stream cyper core is attached to the ARM core through Coprocessor 15. This core is used to create
a keystream that can be used to encrypt plain text. The cypher core implements GSM A5/1 to produce a running
keystream by XORing the most significant bits of 3 Linear Feedback Shift Registers (LFSRs). The core can reset
its contents and then accept a 64-bit externally supplied secret session key and a 22-bit frame number to prepare
for keystream generation. During the preparation process, the least significant bit of each LFSR is XORed with
a corresponding bit from the secret session key, and after that with a corresponding bit from the frame number.
During this preparation phase, all LFSRs operate continuously with regular clocking. The eight possible modes of
the 3-bit address port can be used for the purpose of loading the secret session key and frame number.

Once the secret session key and frame number have been loaded into the LFSRs, the address lines can be used
to place the core in keystream generation mode to produce a pair of 114-bit keystreams. These keystreams are
grouped into 32-bit words, and accessed by the ARM core through the Coprocessor 15 interface.

During the A5/1 keystream generation phase the core uses a combination of the three LFSRs operated in an
irregular clocking scheme to iteratively generate 3 separate sequences of bits, which are then XORed to generate
a bit of keystream per clock cycle. The A5/1 LFSR parameters are shown in Table 2.2. LFSRs whose clocking
bit equals the majority value of all clocking bits will shift their contents. If any of the LFSRs does not match the
majority value, it is stalled until its clock bit equals the majority value.
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Table 2.2: GSM A5/1 Parameters

LFSR Length Feedback Polynomial Clocking Bit

1 19 x19+x18+x17+x14 + 1 8
2 22 x22+x21 + 1 10
3 23 x23+x22+x21+x8 + 1 10

The A5/1 algorithm requires three LFSRs of bit lengths 19, 22, and 23, but the design implements them using
three 32 bit registers, with the lengths of the LFSRs being initialized prior to keystream generation. Consequently,
each bit holding and bit manipulating function associated with each bit position in the LFSRs is designed as
a generic unit-block circuit. Through the use of several control signals, a unit-block can operate in regular or
irregular clocking modes and can appropriately XOR its contents with a value received from polynomial evaluation
performed on more significant bits. This means that the core can also be used as a pseudo-random number
generator, by initializing the LFSR lengths, polynomials, and clocking bits.

The core is connected to the ARM core via a 32-bit coprocessor interface. It is the responsibility of the software
on the ARM core to appropriately load and use the two 114-bit keystream pairs. In addition, the module has a
3-bit address port and a read/write strobe signal interface with the coprocessor. Once a keystream has been
generated, the plaintext encryption can be done outside the core.

The A5/1 core is initialized by writing to Coprocessor 15 register CR6. Keystream data is obtained from the core by
reading from Coprocessor 15 register CR8. These registers use self-incrementing counters, so data must always
be written to or read from them in groups of eight words. The initialization data sequence is presented in Table 2.3,
and the keystream data sequence is presented in Table 2.4.

Table 2.3: Initialization Sequence: Coprocessor 15 Register CR6

Index Bits Description

0 [7:0] LFSR 0 length
0 [15:8] LFSR 1 length
0 [23:16] LFSR 2 length
0 [31:24] Reserved
1 [31:0] LFSR 0 polynomial
2 [31:0] LFSR 1 polynomial
3 [31:0] LFSR 2 polynomial
4 [3:0] LFSR 0 clocking bit
4 [7:4] LFSR 1 clocking bit
4 [11:8] LFSR 2 clocking bit
4 [31:12] Reserved
5 [31:0] LFSR 0 session key
6 [31:0] LFSR 1 session key
7 [21:0] LFSR 2 session key

Information Sciences Institute 7



Chapter 2 | ARM Subsystem Errata ITAG TA3B Answer Key

Table 2.4: Keystream Sequence: Coprocessor 15 Register CR8

Index Description

0 Keystream 0 bits [31:0]
1 Keystream 0 bits [63:32]
2 Keystream 0 bits [95:64]
3 Keystream 0 bits [127:96]
4 Keystream 1 bits [31:0]
5 Keystream 1 bits [63:32]
6 Keystream 1 bits [95:64]
7 Keystream 1 bits [127:96]
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3 Smart Memory Subsystem Errata

3.1 Errata

Erratum 762: The address pin count for the system and for the Memory Controller subsystem is 28 instead of 24.

3.2 I/O Description

Erratum 762: The following I/O signal width was corrected:

Table 3.1: Subsystem I/O Signals (Corrected)

Signal In/Out Width Description

MEM_ADDR Out 28 Off-chip memory address. Provides the base address (or the start
address in case of a burst) of the data to be accessed.

Information Sciences Institute 9



Chapter 4 | Maintenance Subsystem Errata ITAG TA3B Answer Key

4 Maintenance Subsystem Errata

4.1 Errata

Erratum 597: Support for runtime reconfiguration of the AXI4 mesh interconnect.

Erratum 600: A collection of subsystem run-time performance monitors was inserted into the test article.

4.2 Features

• Erratum 597: Runtime control of system intercon-
nect routing algorithms

4.3 Block Diagram

Errata 597 and 600: The performance monitor infrastructure was incorporated into the Maintenance subsystem,
and the Mesh Router control signals were connected to it.
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Figure 4.1: Maintenance Subsystem Block Diagram

4.4 I/O Description

Errata 597 and 600: The following I/O signals were added to the Maintenance Subsystem.

Table 4.1: Subsystem I/O Signals

Signal In/Out Width Description

BRAM_ADDR Out 10 maintenance subsystem control address
BRAM_DOUT Out 8 maintenance subsystem control data
BRAM_WE Out 9 maintenance subsystem control write enable
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Table 4.1: Subsystem I/O Signals

Signal In/Out Width Description

arm_cpuwait In 1 ARM processor stall signal
zpu_cpuwait In 1 ZPU processor stall signal
zpu_pc In 32 ZPU processor program counter
zpu_inst In 32 ZPU processor instruction register
axi_ports_empty In 90 AXI4S interconnect Input FIFO empty signal
axi_ports_full In 90 AXI4S interconnect Input FIFO full signal

4.5 Technical Details

Erratum 597: Run-time reconfiguration of the AXI4S mesh interconnect is controlled by the Maintenance subsys-
tem through the use of the BRAM_* and ROUTER_PAUSE input signals. The mesh tables are preloaded with
an XY Dimension Order Routing algorithm. After pausing the routers, the Maintenance subsystem can use the
BRAM_* signals to change the routing algorithm to any algorithm suitable for a 3-by-3 mesh network, such as YX
Dimension Order Routing. Table 4.2 defines the addresses for each of the mesh routers.

Table 4.2: Maintenance Controller Core Address Map

Address Range Router

0x24000000 – 0x24000FFF Mesh Router 0
0x24010000 – 0x24010FFF Mesh Router 1
0x24020000 – 0x24020FFF Mesh Router 2
0x24030000 – 0x24030FFF Mesh Router 3
0x24040000 – 0x24040FFF Mesh Router 4
0x24050000 – 0x24050FFF Mesh Router 5
0x24060000 – 0x24060FFF Mesh Router 6
0x24070000 – 0x24070FFF Mesh Router 7
0x24080000 – 0x24080FFF Mesh Router 8

4.5.0.1 Module-Level Address Mapping

Erratum 597: The following address range is added to the Maintenance subsystem address map.

Table 4.3: Module-Level Address Mapping

Address Range Core

0x24000000 – 0x24FFFFFF Maintenance Controller

4.5.1 Performance Monitors Infrastructure

Erratum 600: This entire subsection has been added as an erratum.

The performance monitor infrastructure provides run-time system information. The information can be collected
and used by a designer to better understand the system performance under various loads and conditions. The
system uses individual cores to monitor the ARM processor, ZPU processor, AVR processor, and AXI4S mesh
interconnect routers. A designer can enable or disable monitoring and capture or reset each monitor core’s data.
The monitoring infrastructure is composed of the following blocks:

• Performance Monitor Interface

• Performance Monitor Hub

• ARM Performance Monitor Core

• AVR Performance Monitor Core

• ZPU Performance Monitor Core

• AXI4S Mesh Interconnect Monitor Core
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The ARM subsystem, Cryptographic subsystem, and AXI4S Interconnect are separate from the Maintenance sub-
system, but their monitoring cores reside within the Maintenance subsystem. Figure 4.1 shows the performance
monitor infrastructure integrated into the Maintenance subsystem, including the subsystem I/O ports added for
external monitoring of the ARM subsystem, Cryptographic subsystem, and AXI4S Interconnect.

4.5.1.1 Performance Monitor Interface

The system interacts with the Performance Monitor through the Performance Monitor Interface. An additional port
was added to Subsystem Interface Controller (SIC) interconnect. This port connects to the Performance Monitor
Interface at address 0x24000000. The interface also adds separate 16-element deep FIFOs on the transmit and
receive ports to buffer commands and data going to and from the system.

4.5.1.2 Performance Monitor Hub

The Performance Monitor Hub aggregates commands from the system and passes them on to the specified
performance monitor core. Table 4.4 defines the supported commands.

Table 4.4: Performance Monitor Commands

Command Description

0x0 Retrieve all data from all performance monitors
0x1 Retrieve all data from a specific performance monitor
0x2 Retrieve a specific data word from all performance monitors
0x3 Retrieve a specific data word from one performance monitor
0x4 Reset data for all performance monitors
0x5 Reset data for a specific performance monitor
0x6 Enable data collection for all performance monitors
0x7 Enable data collection for a specific performance monitor
0x8 Disable data collection for all performance monitors
0x9 Disable data collection for a specific performance monitor

Table 4.5 enumerates the performance monitor cores. These numbers can be combined with commands to
designate a specific performance monitor.

Table 4.5: Performance Monitor Cores Numeric Representation

Number Core Name

0 AVR Processor Performance Monitor
1 ZPU Processor Performance Monitor
2 ARM Processor Performance Monitor
3 AXI4S Interconnect Performance Monitor

Table 4.6 describes the Performance Monitor Hub Command Register at address 0x24000000.

Table 4.6: Performance Monitor Hub Command Register

Bit number Access Description

[31:12] — Reserved
[11:8] w Monitor number (Table 4.5)
[7:4] — Reserved
[3:0] w Command (Table 4.4)
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After a command is issued, the resulting data can be read from address 0x24000000. The data returned depends
on the command that was issued. The first word of data indicates how many monitors are included in the results.
Then for each monitor, the number of data words, followed by the actual data words are returned. A simple C
program with a double-nested loop can be used to iterate over each monitor and then over each datum.

4.5.1.3 AVR Performance Monitor Core

The AVR performance monitor core receives inputs avr_cpuwait, avr_pc, and avr_inst. When the avr_cpuwait
signal is high, the AVR processor is stalled and waiting for data. When enabled, the monitor core counts the
number of clock cycles the avr_cpuwait signal is active. Combined with the total run-time of the AVR subsystem, a
user can quickly understand the utilization of the processor core. The monitor can also capture the current value
of the program counter and the current instruction that is being executed. The performance monitor infrastructure
allows this information to be collected at run-time and to be enabled, disabled, or reset at the user’s discretion.

The AVR monitor includes two 64-bit timers and two 32-bit words for the program counter and current instruction.
Timer 0 measures the idle time when the avr_cpuwait signal is asserted. Timer 1 measures the active run time,
when the avr_cpuwait signal is not asserted. The monitor data is described in Table 4.7.

Table 4.7: AVR Performance Monitor Core Data

Word Description

0 Timer 0: AVR processor idle timer [31:0] data
1 Timer 0: AVR processor idle timer [63:32] data
2 Timer 1: AVR processor run timer [31:0] data
3 Timer 1: AVR processor run timer [63:32] data
4 AVR processor program counter
5 AVR processor instruction register

4.5.1.4 ZPU Performance Monitor Core

The ZPU performance monitor core receives inputs zpu_cpuwait, zpu_pc, and zpu_inst. When the zpu_cpuwait
signal is high, the ZPU processor is stalled and waiting for data. When enabled, the monitor core counts the
number of clock cycles the zpu_cpuwait signal is active. Combined with the total run-time of the ZPU subsystem,
a user can quickly understand the utilization of the processor core. The monitor can also capture the current value
of the program counter and the current instruction that is being executed. The performance monitor infrastructure
allows this information to be collected at run-time and to be enabled, disabled, or reset at the user’s discretion.

The ZPU monitor includes two 64-bit timers and two 32-bit words for the program counter and current instruction.
Timer 0 measures the idle time when the zpu_cpuwait signal is asserted. Timer 1 measures the active run time,
when the zpu_cpuwait signal is not asserted. The monitor data is described in Table 4.8.

Table 4.8: ZPU Performance Monitor Core Data

Word Description

0 Timer 0: ZPU processor idle timer [31:0] data
1 Timer 0: ZPU processor idle timer [63:32] data
2 Timer 1: ZPU processor run timer [31:0] data
3 Timer 1: ZPU processor run timer [63:32] data
4 ZPU processor program counter
5 ZPU processor instruction register
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4.5.1.5 ARM Performance Monitor Core

The ARM performance monitor core receives input signal arm_cpuwait. When the arm_cpuwait signal is high, the
ARM processor is stalled and waiting for data. When enabled, the monitor core counts the number of clock cycles
the arm_cpuwait signal is active. Combined with the total run-time of the ARM subsystem, a user can quickly
understand the utilization of the processor core. The performance monitor infrastructure allows this information to
be collected at run-time and to be enabled, disabled, or reset at the user’s discretion.

The ARM monitor includes two 64-bit timers. Timer 0 measures the idle time when arm_cpuwait is asserted.
Timer 1 measures the active run time, when arm_cpuwait is not asserted. The monitor data is described in
Table 4.9.

Table 4.9: ARM Performance Monitor Core Data

Word Description

0 Timer 0: ARM processor idle timer [31:0] data
1 Timer 0: ARM processor idle timer [63:32] data
2 Timer 1: ARM processor run timer [31:0] data
3 Timer 1: ARM processor run timer [63:32] data

4.5.1.6 AXI4S Interconnect Performance Monitor Core

The AXI4S interconnect performance monitor core receives bus inputs axi_port_empty and axi_port_full. These
signals reflect the AXI4S interconnect input FIFO status for the mesh network routers. The interconnect ports in
the TA3B system have independent FIFOs to buffer incoming data. The FIFO status is useful for understanding the
utilization of the interconnect and the load distribution of an application on the system. The performance monitor
infrastructure allows this information to be collected at run-time and to be enabled, disabled, or reset at the user’s
discretion.

The AXI4S monitor data includes six 32-bit words indicating the status of the input FIFOs. The AXI4S interconnect
has 9 ports. Each port has five FIFOs for incoming data, one in each Cartesian direction—North, South, East,
West—and one for the subsystem’s local port. This corresponds to 45 FIFO Empty signals and 45 FIFO Full
signals, as shown in Figure 4.10.

Table 4.10: AXI4S Performance Monitor Core Data

Index Bits Description

0 [31:0] FIFO empty signals
1 [45:32] FIFO empty signals
1 [63:46] Reserved
2 [95:64] Reserved

3 [31:0] FIFO full signals
4 [45:32] FIFO full signals
4 [63:46] Reserved
5 [95:64] Reserved

The 45 used bits of each FIFO signal are ordered as follows as shown in Figure 4.11, where L, N, S, E, and W
correspond to Local, North, South, East, and West port connections.
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Table 4.11: AXI4S Performance Monitor Core Data

Index Description Subsystem

[4:0] Router 0 signals (L, N, S, E, W) Smart Memory subsystem
[9:5] Router 1 signals (L, N, S, E, W) ARM subsystem
[14:10] Router 2 signals (L, N, S, E, W) Maintenance subsystem
[19:15] Router 3 signals (L, N, S, E, W) Peripheral subsystem
[24:20] Router 4 signals (L, N, S, E, W) Cryptographic subsystem
[29:25] Router 5 signals (L, N, S, E, W) Hardware Control subsystem
[34:30] Router 6 signals (L, N, S, E, W) AVR Subsystem
[39:35] Router 7 signals (L, N, S, E, W) On-Chip Memory subsystem
[44:40] Router 8 signals (L, N, S, E, W) JTAG subsystem
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5 Peripheral Subsystem Errata

5.1 Errata

Erratum 602: Writable UART counters were inserted into the test article to allow runtime baud rate adjustments.

5.2 Technical Details

Erratum 602: The UART supports operations to receive and transmit data, to get and set the baud rate, to get the
FIFO status, and to acquire, check, or release a mutex. The operation requested is determined by the read or
write address from Table 5.1.

Table 5.1: UART Address Summary

Address Description

0x32000000 Normal Operation
0x32000004 Get/Set Baud Low
0x32000008 Get/Set Baud High
0x3200000C Get FIFO Status
0x32000010 Check Mutex
0x32000110 Acquire Mutex
0x32000210 Release Mutex

Erratum 602: The UART baud rate is controlled by two 32-bit registers. The low 12 bits at address 0x32000004
set the baud frequency and the low 16 bits at address 0x32000008 set the baud limit. These registers together
set two internal counters that configure the baud clock.

Erratum 602: The UART default baud rate is 57,600 bps. Table 5.2 shows the baud rate settings to use if the
system clock frequency is 50 MHz.
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Table 5.2: UART Settings

Baud Rate baud_freq baud_limit

300 0x0003 0xF421
600 0x0003 0x7A0F

1,200 0x0003 0x3D06
2,400 0x0006 0x3D03
4,800 0x000C 0x3CFD
9,600 0x0018 0x3CF1

14,400 0x0024 0x3CE5
19,200 0x0030 0x3CD9
28,800 0x0048 0x3CC1
38,400 0x0060 0x3CA9
56,000 0x001C 0x0C19
57,600† 0x0090 0x3C79

115,200 0x0120 0x3BE9
128,000 0x0040 0x0BF5
153,600 0x0180 0x3B89
230,400 0x0240 0x3AC9
256,000 0x0080 0x0BB5
460,800 0x0480 0x3889
921,600 0x0900 0x3409

1,382,400 0x0D80 0x2F89
2,304,000 0x0480 0x07B5
4,608,000 0x0900 0x0335
†Default baud rate

Erratum 602: The baud settings in Table 5.2 can be calculated from the desired baud rate as follows:

Baud_freq =
16× baud_rate

gcd(system_clock_freq, 16× baud_rate)

Baud_limit =
system_clock_freq

gcd(system_clock_freq, 16× baud_rate)
− baud_freq
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6 Cryptographic Subsystem Errata

6.1 Errata

Erratum 599: The ZPU processor’s data memory is connected to the JTAG chain.

Erratum 600: A collection of subsystem run-time performance monitors was inserted into the test article.

Erratum 686: The SHA-3 hash function can be bypassed.

Erratum 753: The SHA-3 Skein candidate was added to the Cryptographic subsystem.

6.2 Features

Erratum 753: The following features were added to the Cryptographic subsystem.

• Efficient implementation of SHA-3 candidates
Blake, JH, and Skein

• Runtime selection of three cryptographic cores

6.3 I/O Description

Erratum 600: The following I/O pins were added to the Cryptographic Subsystem.

Table 6.1: Subsystem I/O Signals (Added)

Signal In/Out Width Description

zpu_cpuwait Out 1 ZPU processor stall signal
zpu_pc Out 32 ZPU processor program counter
zpu_inst Out 32 ZPU processor instruction register

6.4 Technical Details

6.4.1 ZPU Core

Erratum 599: The ZPU processor data memory can be configured through the JTAG subsystem. This mem-
ory resides within the Subsystem Interface Controller (SIC). JTAG write transactions starting at base address
0x41000000 are written to the ZPU data memory, while write transactions starting at base address 0x42000000
are written to the SIC control registers.

Erratum 600: The ZPU processor’s fetch stall signal, program counter, and current instruction register are con-
nected to the Maintenance Subsystem. The processor stalls when it performs I/O transactions to memory. More
details regarding the monitoring of the ZPU processor’s cpuwait, program counter, and instruction register signal
can be found in Chapter 4.

6.4.2 Subsystem Interface Controller

6.4.2.1 SIC Control Registers

Errata 686 and 753: When the select bits for the Cryptographic algorithm are set to 10, the Skein hash function is
selected. When the bits are set to 11, the encryption is bypassed and the input plaintext is passed to the output.

Information Sciences Institute 18



Chapter 6 | Cryptographic Subsystem Errata ITAG TA3B Answer Key

Table 6.2: Remote Request Register (Corrected)

Bit number Access Description

[31:18] — Reserved (bit 17 is now part of the algorithm selection)
[17:16] r/w Crypto Core algorithm select

(00 = JH, 01 = Blake, 10 = Skein, 11 = Bypass) [default:00]
[15:14] r/w Data memory read margin B adjust [default: 00]
[13:12] r/w Data memory read margin A adjust [default: 00]
[11:10] r/w Program memory read margin B adjust [default: 00]
[9:8] r/w Program memory read margin A adjust [default: 00]
[7:2] — Reserved
1 r/w When 1, initiates remote data memory requests [default: 0]
0 r/w When 1, initiates remote program memory requests [default: 0]

6.4.3 Crypto Core

Erratum 686: This subsystem provides three cryptographic cores: JH, Blake, and Skein. Before using the Crypto
core to generate a hash for a message, the user must select the proper algorithm. Write 0x00000000 for JH,
0x00010000 for Blake, or 0x00020000 for Skein to the SIC Remote Request Register at address 0x42000010. JH
is selected by default.

6.4.3.1 Skein Implementation

Erratum 753: The Skein algorithm is based on the Threefish block cipher. It uses Unique Block Iteration to
compress the block cipher for faster hardware and software performance. The primary proposal for Skein is SHA-
512 with a 64-bit input word size and a 512-bit output. Documentation and details about the algorithm internals
can be found on the author’s website: http://www.skein-hash.info.
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7 Hardware Control Subsystem Errata

7.1 Errata

Erratum 598: Changed the mesh network port width for the Hardware Control kernel to be 16 bits wide rather than
32 bits wide.

7.2 Technical Details

Erratum 598: The Hardware Control subsystem uses a 16-bit data connection, and has additional circuitry for
conversion to the AXI4S 32-bit width of the mesh network. This includes a four element deep FIFO which acts as
an additional buffer between the 32- and 16-bit interfaces.
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8 AVR Subsystem Errata

8.1 Errata

No errata exist for this subsystem.
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9 On-Chip Memory Subsystem Errata

9.1 Errata

No errata exist for this subsystem.
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10 JTAG Subsystem Errata

10.1 Errata

Erratum 599: The ZPU processor’s data memory is connected to the JTAG chain.

10.2 Technical Details

Erratum 599: The JTAG subsystem can be used to configure the ZPU processor data memory in the Cryptographic
subsystem, as described in Chapter 6. The JTAG subsystem is used to aggregate JTAG commands for the AVR,
ARM, and ZPU memories. JTAG write transactions starting at base address 0x41000000 will be written to the
ZPU data memory. Write transactions starting at base address 0x42000000 will be written to the Cryptographic
subsystem SIC control registers.
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11 AXI4 Mesh Interconnect Errata

11.1 Errata

Erratum 597: Supports runtime reconfiguration of the AXI4 mesh interconnect.

Erratum 598: Changed the mesh network port width for the Hardware Control kernel to be 16 bits wide rather than
32 bits wide.

Erratum 600: A collection of subsystem runtime performance monitors was inserted into the test article.

11.2 I/O Description

Erratum 600: The following I/O pins were added to the AXI4 Interconnect.

Table 11.1: Subsystem I/O Signals (Added)

Signal In/Out Width Description

axi_ports_empty Out 90 AXI Interconnect Input FIFO empty signal
axi_ports_full Out 90 AXI Interconnect Input FIFO full signal

11.3 Technical Details

Erratum 597: Run-time reconfiguration of the AXI4S mesh interconnect is controlled by the Maintenance subsys-
tem through the use of the BRAM_* and ROUTER_PAUSE input signals. The mesh tables are preloaded with
an XY Dimension Order Routing algorithm. After pausing the routers, the Maintenance subsystem can use the
BRAM_* signals to change the routing algorithm to any algorithm suitable for a 3-by-3 mesh network, such as YX
Dimension Order Routing. The reconfigurability of the routing table was alluded to in the release documentation,
but none of the means or details from Chapter 4 were provided.

Erratum 598: The Hardware Control subsystem—Port 5 on the mesh network—uses a 16-bit data connection,
and has additional circuitry for conversion to the AXI4S 32-bit data transaction width. This includes a four element
deep FIFO which acts as an additional buffer between the 32- and 16-bit interfaces.

Erratum 600: All of the input port FIFO status signals in the AXI4X interconnect are connected to the perfor-
mance monitors in the Maintenance Subsystem. Additional details regarding the FIFO monitoring is available in
Chapter 4.
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1 Introduction

This report describes Independent Functional Testing capabilities for Xilinx 7-Series FPGAs developed by USC
Information Sciences Institute (ISI) and the Virginia Tech Configurable Computing Lab. The goal of this work is
to test the majority of the functionality of a supported FPGA against stuck-at faults. Stuck-at faults are electrical
faults in which signals are permanently stuck in the logic 1 or logic 0 state and are unable to change states.

There are various solutions to this problem presented in published literature, but none of them are comprehensive.
This is the first solution we know of that includes independent functional testing as well as independent coverage
metrics.

Our Statement of Work only requires that we test logic slices, so the interconnect test development that we
performed is an added benefit. ISI developed the coverage assessment and verification code, while Virginia Tech
developed the logic and interconnect testing approach and test generation.

1.1 Specifications

These tests support all four families within the Xilinx 7-Series: Virtex7, Kintex7, Artix7, and Zynq7000. The
only devices not supported are those with more than one Super Logic Region (SLR): XC7VH580T, XC7VH870T,
XC7VX1140T, and XC7V2000T.

Each test generates a PASS/FAIL response. The test coverage is sufficient to determine with a high level of
confidence whether the Device Under Test (DUT) is genuine and operating correctly.

1.2 Overview

Modern FPGAs can contain tens of millions of configurable wires and hundreds of thousands of configurable logic
sites. Testing this many resources raises a variety of technical challenges: FPGAs are portrayed as being highly
regular and therefore excellent candidates for parallelism, but while that characterization is generally true, there
are many nuances and exceptions at very low levels of abstraction.

Testing for stuck-at faults requires separately passing a logic 1 and a logic 0 through every covered path: every
configurable interconnect resource and every configurable logic resource. This is accomplished with a “launch
and capture” approach, where signals are launched from stateful elements along a path through reconfigurable
resources, and are then captured by stateful elements. If both a logic 1 and a logic 0 can pass unaltered through
each configurable resource, then none of the elements on that path can be permanently stuck at any particular
logic state, and stuck-at faults along that path are disproved.

It is not possible to test all configurable paths in a single pass because nearly any selected path will block other
paths. In the best case we can only test one set of non-conflicting resources in any single pass, and collect
multiple sets of tests for use in multiple passes.

These tests focus on the most abundant resources in the device, specifically including SLICEL and SLICEM for
the logic resources, and the INT tile wiring for interconnect resources.

The Zynq XC7Z020 contains a total of 24,240 logic sites of 88 different types. 13,300 of those are slices, 8,810 are
power sources, and the remaining 2,130 are an assortment of DSPs, BRAMs, clock logic, high-speed transceivers,
and other logic. By covering the slices and power sources, we achieve 91 % coverage of logic sites in this device.
The percent coverage increases for larger devices, because they contain a larger percentage of slices.
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1.3 Organization

Chapter 2 begins by describing the testing infrastructure, assumptions, and requirements. Chapters 3 and 4
then presents the logic testing and interconnect testing, respectively. Chapter 5 provides a user’s guide for test
generation and execution. Chapter 6 discusses verification of logic, interconnect, and bitstream coverage, which
is then quantified in Chapter 7. And Chapter 8 presents concluding remarks and discusses future work.
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2 Infrastructure

Our in-circuit testing approach assumes that the FPGA Device Under Test (DUT) is mounted on a PCB, and that
special test access to external FPGA I/O pins is not available. This precludes the use of clock, reset, control, and
monitoring signals. Other testing efforts in published literature do not accommodate these same restrictions.

Required testing connectivity consists of power and an interface to the device Configuration Controller—either
JTAG or SelectMAP.

2.1 Test Agent

A test agent is needed to upload the test bitstreams, execute the tests, and collect the test results. This can include
any of the following: A host PC with a JTAG cable, an internal agent such as the ARM core on a Zynq device, or
an external micro-controller connected to the JTAG or SelectMAP ports.

The test agent must have enough storage for thousands of full configuration bitstreams, typically tens of gigabytes,
depending on the target device. The test agent must also provide an API to control the configuration port and
support these functions:

• bool DownloadBitstream(string filename): Download specified bitstream and confirm that the
bitstream is active. Support for partial bitstreams is not currently required.

• word ReadStatusRegister(void): Poll and return the state of DONE in the Configuration Controller
STAT register.

• WriteAXSSRegister(uint32 word): Write a 32-bit word to the AXSS register.

• Readback(void): Read back part of all of the configuration bitstream. Not required at present but reserved
for fault diagnosis in the future. Readback is not required to test the FPGA interconnect.

The test agent should be able to execute simple instructions using the aforementioned API and a for or while loop.
Trivial bitwise operators are required but arithmetic operators are not.

2.2 Testing

An implicit assumption is made that the interconnect is good when the logic is being tested, and the logic is good
when the interconnect is being tested. As long as both the logic and interconnect tests are executed, faults in
either of these will be detectable.

Each device in the 7-Series families has its own unique tile map and consequently its own unique bitstream. This
means that a separate test suite must be developed for each device from parameterized test constructors.

It is also necessary to read the result back from the FPGA after each test, but we cannot rely on user I/O to do so. A
few alternatives are available, but we have chosen to use STARTUPE2 pin USRDONEO. We can selectively drive
this pin onto the board with USRDONETS, but it is simpler to simply read back its value from the Configuration
Controller STATUS register.

2.3 Clocking

The inability to rely on external I/O for testing requires some other clocking source to run the tests. At a minimum,
all tests need clocked registers to capture results, and some tests also need a register to determine whether they
are testing sa1 or sa0 faults.
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7-Series FPGAs include a few internal clocking options, some of which fit our needs. The internal configura-
tion clock available on STARTUPE2 pin CFGMCLK is documented in the 7 Series FPGAs Configuration User
Guide (UG470). This 65 MHz clock can be driven onto the global clock network and serves our basic clocking
requirements.
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3 Logic Testing

The testing infrastructure currently supports all SLICEL and SLICEM logic sites and most TIEOFF logic sites. This
three site types represent the vast majority of all logic sites in the device.

The remaining site types in 7-Series devices are unsupported at present. Most of them pertain to clocks, FIFOs,
gigabit transceivers, I/Os, PCIe, and BRAM:

AMS ADC
AMS DAC
BSCAN
BSCAN JTAG MONE2
BUFG
BUFGCTRL
BUFG LB
BUFHCE
BUFIO
BUFMRCE
BUFR
CAPTURE
CFG IO ACCESS
DCI
DCIRESET
DNA PORT
DRP AMS ADC
DRP AMS DAC

DSP48E1
EFUSE USR
FIFO18E1
FIFO36E1
FRAME ECC
GCLK TEST BUF
GLOBALSIG
GTHE2 CHANNEL
GTHE2 COMMON
GTPE2 CHANNEL
GTPE2 COMMON
GTXE2 CHANNEL
GTXE2 COMMON
GTZE2 OCTAL
IBUFDS GTE2
ICAP
IDELAYCTRL
IDELAYE2

IDELAYE2 FINEDELAY
ILOGICE2
ILOGICE3
IN FIFO
IOB
IOB18
IOB18M
IOB18S
IOB33
IOB33M
IOB33S
IOBM
IOBS
IOPAD
IPAD
ISERDESE2
KEY CLEAR
MMCME2 ADV

MTBF2
ODELAYE2
ODELAYE2 FINEDELAY
OLOGICE2
OLOGICE3
OPAD
OSERDESE2
OUT FIFO
PCIE 2 1
PCIE 3 0
PHASER IN
PHASER IN ADV
PHASER IN PHY
PHASER OUT
PHASER OUT ADV
PHASER OUT PHY
PHASER REF
PHY CONTROL

PLLE2 ADV
PMV
PMV2
PMV2 SVT
PMVBRAM
PMVIOB
PS7
RAMB18E1
RAMB36E1
RAMBFIFO36E1
STARTUP
USR ACCESS
XADC

3.1 Organization

Slice testing is divided into six groups. These group numbers have well-defined meanings to the build scripts:

1. LUTs
2. Combinational paths through AMUX / BMUX / CMUX / DMUX
3. Combinational paths through AFFMUX / BFFMUX / CFFMUX / DFFMUX
4. SelectRAM (distributed LUT RAM)
5. Shift registers
6. Carry chains

3.2 Scripts

Each group test is generated with the help of a controller, a set of logic cells, and a top-level design. The design
instantiates the controller and connects the cells to each other. The design is generated by a C++ Torc application
that accepts a pair of rectangular coordinates and a mode as inputs and creates a testgen*.v file.
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Table 3.1: Logic testing groups.

Group Design Cells Directory # Tests

1 testgen.v slicel.v lut 2
2 testgen.v slicel.v config with FF 8
3 testgen.v slicel.v FFs 7
4 testgen s ram.v s ram32.v, s ram64.v,

s ram128.v, s ram256.v
SelectRAM 4

5 testgen shiftreg.v srl16.v, srl32.v shiftreg 2
6 testgen carrychain.v none VCARRY 1

A collection of scripts uses the Xilinx tools to generate XDL for the target device, while additional scripts modify
the XDL design for the current test. These scripts coordinate the generation of the test files and for each of the six
groups:

extract dut.sh: Extracts the various parts of the design, including instances and nets of the DUT and the controller.

swap outpin.sh <config>: Modifies the nets and slice configurations for the DUT. For example, the Xilinx tools
creates certain datapaths that go from LUT output O5 to AMUX, but this script can force that datapath
through output O6 to AMUX.

combine xdl.sh: Merges the modified extracted XDL parts into the new XDL design.

config lut.sh <config>: Modifies the LUT equation in each DUT slice. The original HDL design includes a dummy
LUT equation to prevent optimization, but this script modifies the LUT equation as needed.

compile.sh <config>: Compiles HDL files using the Xilinx tools, and invokes various scripts to generate temp.bit.

3.3 Controller

The testing process requires multiple configuration, each of which uses a small portion of the FPGA fabric for a
controller to oversee the testing. The controller consists of a driver and a comparator, where the driver provides
stimulus to the DUT, and the comparator observes the DUT output and compares it to the DUT input. The
comparator result generates a PASS or FAIL signal on the FPGA’s DONE pin, which can also be observed using
readback.

For groups 1, 2, 3, and 6, the driver is implemented as a simple Finite State Machine (FSM). In odd numbered
states, the driver switches the input vector that it applied to the DUT, and in even numbered states, the comparator
compares the DUT input and output. If a mismatch is detected, the FAIL signal is latched and the DONE pin is
driven high.

For Group 4, the controller tests the SelectRAM for memory faults with the MATS (Modified Algorithmic Test
Sequence) test.

For Group 5, the controller tests shift-registers with two symmetric chains, and generates a FAIL result if the two
do not match.

In general, the controller resides in one portion of the device, while the other portion is being tested. This is flipped
in the complementary configuration when the controller and DUT positions are swapped for full fault coverage.
More specifically, the presence of large gaps in the 7-Series fabric for ARM, PCIe, transceivers, and other cores
makes it necessary to subdivide the device into contiguous rectangular blocks, where each of the blocks is tested
in turn.
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3.4 Generation

3.4.1 Groups 1–3: Logic

The testing strategy for slices require two conditions to be met. (1) All paths within the slice are excited to 0
to detect stuck-at-1 (sa1) faults, and excited to 1 to detect stuck-at-0 (sa0) faults. (2) If a fault exists it must be
propagated outside the FPGA to be observable. The first condition can be met with appropriate test vectors and
design generation. The second condition is more difficult to meet.

The FPGA contains a large number of slices, and each slice has multiple output pins. Direct observation of these
pins outside the FPGA is impossible because it would require on the order of 100,000 I/O pins. A more tractable
approach is to chain the output of one slice to the input of the next slice, as depicted in Figure 3.1. Use of the
identify function ensures correct propagation from slice outputs to subsequent slice LUT inputs, and the result of
all the tests can be observed at the very end of the slice chain.

7 Series FPGAs CLB User Guide www.xilinx.com 9
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Chapter 1

Overview

CLB Overview
The 7 series configurable logic block (CLB) provides advanced, high-performance FPGA 
logic:

• Real 6-input look-up table (LUT) technology

• Dual LUT5 (5-input LUT) option

• Distributed Memory and Shift Register Logic capability

• Dedicated high-speed carry logic for arithmetic functions

• Wide multiplexers for efficient utilization

CLBs are the main logic resources for implementing sequential as well as combinatorial 
circuits. Each CLB element is connected to a switch matrix for access to the general routing 
matrix (shown in Figure 1-1). A CLB element contains a pair of slices.

The LUTs in 7 series FPGAs can be configured as either a 6-input LUT with one output, or 
as two 5-input LUTs with separate outputs but common addresses or logic inputs. Each 
5-input LUT output can optionally be registered in a flip-flop. Four such 6-input LUTs and 
their eight flip-flops as well as multiplexers and arithmetic carry logic form a slice, and two 
slices form a CLB. Four flip-flops per slice (one per LUT) can optionally be configured as 
latches. In that case, the remaining four flip-flops in that slice must remain unused.

X-Ref Target - Figure 1-1

Figure 1-1: Arrangement of Slices within the CLB

Switch
Matrix

Slice(1)

COUTCOUT

CINCIN

Slice(0)

CLB

UG474_c1_01_071910

!!!!!!!!!!

"#$! %&'!

Figure 3.1: Output chaining from Slice(0) to Slice(1) to Slice(0) in next tile up.
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Table 3.2: SLICE Test Paths.
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X-Ref Target - Figure 2-4

Figure 2-4: Diagram of SLICEL

A6:A1

D
COUT

D

DX

C

CX

B

BX

A

AX

O6
O5

UG474_c2_03_101210

DX
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

Reset Type

D

FF/LAT
INIT1
INIT0
SRHI
SRLO

SR

CE
CK

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

D

SR

CE
CK

D

SR

CE
CK

D

SR

Q

CE
CK

CIN

0/1

Sync/Async

FF/LAT

A6:A1

O6
O5

C6:1

CX

D6:1

A6:A1

O6
O5

B6:1

BX

A6:A1

O6
O5

A6:1

AX

SR
CE

CLK

CE
Q

CK SR

Q

Q

Q

SRHI
SRLO
INIT1
INIT0

D

CE
Q

CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q
CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q
CK SR

SRHI
SRLO
INIT1
INIT0

20 www.xilinx.com 7 Series FPGAs CLB User Guide
UG474 (v1.7) November 17, 2014

Chapter 2: Functional Details

X-Ref Target - Figure 2-4

Figure 2-4: Diagram of SLICEL

A6:A1

D
COUT

D

DX

C

CX

B

BX

A

AX

O6
O5

UG474_c2_03_101210

DX
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

Reset Type

D

FF/LAT
INIT1
INIT0
SRHI
SRLO

SR

CE
CK

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

D

SR

CE
CK

D

SR

CE
CK

D

SR

Q

CE
CK

CIN

0/1

Sync/Async

FF/LAT

A6:A1

O6
O5

C6:1

CX

D6:1

A6:A1

O6
O5

B6:1

BX

A6:A1

O6
O5

A6:1

AX

SR
CE

CLK

CE
Q

CK SR

Q

Q

Q

SRHI
SRLO
INIT1
INIT0

D

CE
Q

CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q
CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q
CK SR

SRHI
SRLO
INIT1
INIT0

LUT: O6 to [ABCD] LUT: O6 to [ABCD] (O6=!A1)

20 www.xilinx.com 7 Series FPGAs CLB User Guide
UG474 (v1.7) November 17, 2014

Chapter 2: Functional Details

X-Ref Target - Figure 2-4

Figure 2-4: Diagram of SLICEL

A6:A1

D
COUT

D

DX

C

CX

B

BX

A

AX

O6
O5

UG474_c2_03_101210

DX
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

Reset Type

D

FF/LAT
INIT1
INIT0
SRHI
SRLO

SR

CE
CK

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

D

SR

CE
CK

D

SR

CE
CK

D

SR

Q

CE
CK

CIN

0/1

Sync/Async

FF/LAT

A6:A1

O6
O5

C6:1

CX

D6:1

A6:A1

O6
O5

B6:1

BX

A6:A1

O6
O5

A6:1

AX

SR
CE

CLK

CE
Q

CK SR

Q

Q

Q

SRHI
SRLO
INIT1
INIT0

D

CE
Q

CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q
CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q
CK SR

SRHI
SRLO
INIT1
INIT0

20 www.xilinx.com 7 Series FPGAs CLB User Guide
UG474 (v1.7) November 17, 2014

Chapter 2: Functional Details

X-Ref Target - Figure 2-4

Figure 2-4: Diagram of SLICEL

A6:A1

D
COUT

D

DX

C

CX

B

BX

A

AX

O6
O5

UG474_c2_03_101210

DX
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

Reset Type

D

FF/LAT
INIT1
INIT0
SRHI
SRLO

SR

CE
CK

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

FF/LAT
INIT1
INIT0
SRHI
SRLO

D

SR

CE
CK

D

SR

CE
CK

D

SR

Q

CE
CK

CIN

0/1

Sync/Async

FF/LAT

A6:A1

O6
O5

C6:1

CX

D6:1

A6:A1

O6
O5

B6:1

BX

A6:A1

O6
O5

A6:1

AX

SR
CE

CLK

CE
Q

CK SR

Q

Q

Q

SRHI
SRLO
INIT1
INIT0

D

CE
Q

CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q
CK SR

SRHI
SRLO
INIT1
INIT0

D

CE Q
CK SR

SRHI
SRLO
INIT1
INIT0

LUT: O6 TO [ABCD]MUX LUT: O5 TO [ABCD]MUX

Information Sciences Institute 10



Chapter 3 | Logic Testing ITAG IFT Report

Table 3.2: SLICE Test Paths.
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Table 3.2: SLICE Test Paths.
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Figure 2-4: Diagram of SLICEL
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Figure 2-4: Diagram of SLICEL
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Table 3.2: SLICE Test Paths.
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3.4.2 Group 4: Distributed RAM

This group tests for faults in SLICEM SelectRAM with the MATS methodology. The widest address bus width
required is 8 bits for the RAM256X1S mode. A simple 11-bit up/down counter is used to implement the MATS test,
where the bits are interpreted as follows:

• counter[0]: write-enable signal, 0 to read, and 1 to write.
• counter[9:1]: if counter[0] = 0, march up, address[7:0] = counter[8:1]
• counter[9:1]: if counter[0] = 1, march down, address[7:0] = ∼counter[8:1]
• counter[10]: data bit to write

If the counter is incremented at rate CLK, then the memory is driven at rate CLK / 2 on rising edges. This 11-bit
free-running counter is sufficient to implement the basic MATS test.

• For counter values 000,0000,0000 to 001,1111,1111, memory is traversed in increasing order, with data
value 0 written and read back on consecutive cycles.

• For counter values 010,0000,0000 to 011,1111,1111, memory is traversed in decreasing order, with data
value 0 written and read back on consecutive cycles.

• For counter values 100,0000,0000 to 101,1111,1111, memory is traversed in increasing order, with data
value 0 written and read back on consecutive cycles.

• For counter values 110,0000,0000 to 111,1111,1111, memory is traversed in decreasing order, with data
value 0 written and read back on consecutive cycles.
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Table 3.3: SLICEM Memory Testing.
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Figure 2-6: 32 X 2 Quad Port Distributed RAM (RAM32M)
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X-Ref Target - Figure 2-10

Figure 2-10: 64 X 1 Quad Port Distributed RAM (RAM64M)
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X-Ref Target - Figure 2-13

Figure 2-13: 128 X 1 Dual Port Distributed RAM (RAM128X1D)

UG474_c2_12_101210

DI1D
DI

AX

A[6:0]

WCLK

DPRA[6:0]

WE

(CLK)
(WE)

7

DPRAM64

RAM128X1D

A[6:1]
WA[7:1]
CLK
WE

O6

DI1

6
7

DPRAM64

A[6:1]
WA[7:1]
CLK
WE

O6

Registered
OutputF7BMUX

(Optional)

D Q

SPO

DI1

6
7

DPRAM64

A[6:1]
WA[7:1]
CLK
WE

O6

DI1

6

7

DPRAM64

A[6:1]
WA[7:1]
CLK
WE

O6

Registered
OutputF7AMUX

(Optional)

D Q

DPO

A6 (CX)

6

7 Series FPGAs CLB User Guide www.xilinx.com 33
UG474 (v1.7) November 17, 2014

Distributed RAM (Available in SLICEM Only)

Distributed RAM configurations greater than the provided examples require more than 
one SLICEM. There are no direct connections between slices to form larger distributed 
RAM configurations within a CLB or between slices.

X-Ref Target - Figure 2-14

Figure 2-14: 256 X 1 Single Port Distributed RAM (RAM256X1S)
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3.4.3 Group 5: Shift Registers

Shift registers are tested for faults with a pair of long circular chains of equal length. The chains are initialize with
an alternating 10 pattern, and the low-order bits of the two chains are XORed together, as depicted in Figure 3.2.

One configuration tests chains of SRL16 primitives, while the other configuration tests chains of SRL32 primitives.
This allows both possible shift register modes to be tested for both sa0 and sa1 faults.

SRL SRL SRL SRL

SRL SRL SRL SRL

Figure 3.2: Pair of long circular SRL chains, with outputs XORed together for final result.

3.4.4 Group 6: Vertical Carry Chains

All available slices in each column are cascaded with COUT of one slice driving CIN of the next slice to form a
chain. The output of the top slice is passed through DMUX and connected to the bottom slice CIN of the next
column. This forms long vertical carry chains that span multiple columns. CIN is alternately excited with 1 and 0
to test both sa0 and sa1 faults.
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Figure 2-4: Diagram of SLICEL
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Figure 3.3: Carry propagation within a single slice.
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3.4.5 Coverage

Each slice logic element and input / output port is covered by one or more test groups and configurations. The
elements and ports are depicted in Figure 3.4, and the associated coverage of those ports and elements is shown
in Table 3.4.

LUT

FMUX

CY0MUX

5FFMUX

5FF

XOR

CYMUX

FFMUX

OUTMUX

FFDIMUX

[ABCD]X [ABCD]MUX

[ABCD]

[ABCD]Q

COUT

CIN

[ABCD][5:0]

[ABCD]I

Figure 3.4: Covered SLICEM elements.

Table 3.4: SLICEM fault coverage by node.

Element Group : Configuration

LUT 1:1, 1:2
OUTMUX 2:1, 2:2, 2:3, 2:4, 2:5, 2:6, 2:7, 2:8
FFMUX 3:1, 3:2, 3:3, 3:4, 3:5, 3:6, 3:8
XOR 2:5, 3:5
CY0MUX 2:3, 2:5
CYMUX 2:3, 2:4, 2:6
5FFMUX 2:7, 2:8
5FF 2:7, 2:8
FF 3:1
FMUX 4:2, 4:3, 4:4
LUT address decode 4:1, 4:2, 4:3, 4:4
LUT asynchronous read 4:1, 4:2, 4:3, 4:4
LUT SRL 5:1, 5:2
Input / Output Group : Configuration

[ABCD]MUX 2:1
[ABCD]Q 3:1
[ABCD][5:0] 2:1
[ABCD]X 2:5
[ABCD] 1:1, 1:2
CIN 6:1
COUT 6:1
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4 Interconnect Testing

4.1 Approach

FPGAs consist of islands of irregular interconnect in a sea of regular interconnect. The 7-Series architecture pairs
one INT interconnect tile with each CLB, BRAM, DSP, or transceiver tile. Testing the interconnect requires the
ability to launch signals into intended parts of the interconnect, and to subsequently capture them. This work
focuses on testing INT tiles that are paired with adjacent CLB tiles, and which account for the vast majority of all
interconnect in the device.

The 7-Series interconnect is structured as a collection of wires linked by Programmable Interconnect Points (PIPs).
User designs cannot create or modify wires in any way—they can only turn predetermined connections between
wires on or off.

The smallest devices contain millions of wires and more than ten times that many PIPs. The interconnect architec-
ture is such that 100 % wire coverage would not translate into 100 % PIP coverage, but conversely that 100 % PIP
coverage would virtually guarantee 100 % wire coverage. The only missing wires would be certain permanently
on-connections between logic sites. We consequently aim for high PIP coverage with the understanding that high
wire coverage will follow as a consequence.

The 7-Series INT tile type defines 3,744 PIPs. In practice certain boundary conditions may reduce that number
by a handful. Our approach is to visit each of these INT PIPs in turn and to simultaneously test the PIP in nearly
every INT tiles at once. This approach ensures that testing time remains constant as the device size increases.

When testing INT tiles paired with adjacent CLB tiles, the result of each PIP test path is fed into a carry chain mux
and propagated vertically. If the mux inputs are complementary and the select line is driven by a PIP test path
result, then the propagated value will signal whether or not a fault occurred in the test. This setup is used for fault
detection, but it also permits fault diagnosis through readback, where each register value indicates whether the
associated PIP test path exhibited a fault.

4.2 Generation

Test generation is a five-step process:

1. Generate XDLRC architecture information for the target device. The two special environment variables
XIL_TEST_ARCS and XIL_DRM_EXCLUDE_ARCS must be set to 1.

2. Preprocess the XDLRC to generate a device database for later use.
3. Use Synplify to synthesize the SLICE1 and SLICE2 modules into EDIF. XST is unable to synthesize these

designs properly and causes a fatal error during the Xilinx map stage.
4. Generate and implement two or more designs that divide the device into separate DUT and controller re-

gions.
5. Customize the generated XDL for each testable PIP in the INT tiles.

Most of these steps must be executed for each device to be supported. The XDL customization according to PIPs
must be executed for every PIP in the INT tiles, which is O(3, 700). Devices with the same part number that differ
only in packaging do not need to be treated separately.

A bash script—generate.sh—automates the generation process. It takes the design part number as a parameter
and generates a directory containing the resulting configuration bitstreams. Even on a relatively fast machine, this
step typically takes multiple days to execute, with most of the time taken by xdl -xdl2ncd and by bitgen. This
process could be greatly accelerated in the future with the help of Torc Micro-Bitstreams and Virginia Tech’s tFlow.
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A relatively fast Core i54670K CPU running at 3.4 GHz with 32 GB of memory can normally generate a full
XC7Z020 bitstream in 600 s of wall clock time, with most of the time consumed by DRC checks. Bitstream genera-
tion time can be reduced from 3,480 s to 357 s for the XC7Z0100 by passing a -d flag to bitgen. Further reduction
is possible in xdl conversion by disabling DRC checks with the -nodrc flag, dropping from 4,080 s to 140 s

4.3 Procedure

The testing procedure is described by the following pseudo-code, and makes use of the API in Chapter 2.1:

For each test configuration bitstream:
DownloadBitstream(filename)
Wait(10ms)
status = ReadStatusRegister()
if (bit 14 of status is set):

Report test failure for this test in phase 0
Write AXSSRegister(1)
Wait(10ms)
status = ReadStatusRegister()
if (bit 14 of status is cleared):

Report test failure for this test in phase 1
If none of the tests reported failure:

Report test pass

A bash script—run.sh—is provided to administer the test based on a directory of generated test configurations.
A problem with the Xilinx iMPACT utility interferes with the testing process, so iMPACT is used only to read the
device status register, and we recommend the open-source xc3sprog for bitstream configuration. Despite the
name, xc3sprog works for a wide range of Xilinx architectures.

Testing time depends upon the device size, the number of test configurations, and the download speed. For the
XC7Z020, each configuration takes about 20 s to download over a 6 MHz JTAG connection, so the full test for a
device would complete within one day. When it is possible to use SelectMAP instead of JTAG, the download time
can be reduced by a factor of 10.

4.4 Estimated Coverage

The predicted coverage for XC7Z020 INT tiles was 84.0 % of wires and 89.9 % of PIPs. These numbers are now
known to be incorrect because of the many PIPs that are not being properly routed. Further discussion is provided
in Chapter 7.
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5 User’s Guide

5.1 System Requirements

• Xilinx ISE version 14.7 is required to properly support Zynq devices.

• The open-source Go language (http://golang.org) is required for XDLRC parsing, and for module and
template test generation.

• The open-source xc3sprog (http://xc3sprog.sourceforge.net) programming utility is required for
device configuration.

5.2 Test Generation

To begin test generation, set environment variable BIST_PART to the proper device designator, and remove stack
size limits.

Bash:
#!/bin/bash
export BIST_PART=xc7k160tfbg676-1
ulimit -s unlimited

Csh:
#!/bin/tcsh
setenv BIST_PART xc7k160tfbg676-1
limit stacksize unlimited

After setting the BIST_PART environment variable, invoke generate_all.sh. This script will in turn invoke the
generate_all.sh scripts inside each of the ise directories described in Table 3.1.

./generate_all.sh

It is worth noting that test generation is highly scripted and takes a very long time to complete.

5.3 Test Execution

The $BIST/config all.sh script locates all generated bitstreams in subfolders of $BIST and appends their names
to $BIST/list. Each bitstream in turn is uploaded to the FPGA and executed, after which the status of the DONE
pin is read and logged into $BIST/result.

./config_all.sh
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6 Verification

The coverage verification utility provides an independent assessment of resources covered by the tests. The
assessments are grouped into three categories: Site logic, interconnect, and bits.

In each case, the utility begins by creating a comprehensive list of resources that exist in the device. The utility
then processes each XDL netlist or bitstream, and subtracts resources that it encounters from the larger list.

To guarantee the integrity of the effort, there was no overlap between the team developing the test suites and the
team developing the coverage verification.

6.1 Logic Setting Coverage

Most logic sites contain anywhere from one to hundreds of configurable settings, and each of these can take on
different values. The XDLRC data enumerates allowable values in most cases, but in a few other cases such as
LUT masks, integer constants or bit patterns are used instead.

The setting coverage code accumulates every value for every setting in every logic site definition, and constructs
a comprehensive list of setting values for the device. Every one of these value is internally flagged as unused, and
the total number of setting values is noted. The flags are stored in a bit set for maximum efficiency.

As the logic coverage code visits every XDL instance in the set of test designs, for every setting value that is
used in a design, the unused flag is cleared. The setting values still marked unused after inspection of each test
suite are reported to the user. The final percent coverage is 100 % minus the number of uncovered setting values
divided by the total number of setting values in the device.

6.2 Interconnect Coverage

The interconnect coverage tracking begins by inspecting every wire in the device, eliminating any pruned wires,
and adding all remaining wires to a list. Each remaining wire is then expanded in turn to obtain a list of all PIPs
that it can drive. As in the case of pruned wires, pruned PIPs are eliminating from tracking coverage.

All real wires and PIPs in the device are initially flagged as unused. The lists of wires and PIPs are stored in bit
sets for rapid access and maximum efficiency.

As the interconnect coverage code visits every XDL PIP in the set of test designs, for every wire and PIP used in
the design, the unused flag is cleared. The wires and PIPs still marked unused after inspection of each test suite
are reported to the user. The final percent coverage for wires and PIPs is 100 % minus the number of uncovered
wires in the device and 100 % minus the number of uncovered PIPs in the device.

6.3 Bitstream Coverage

Bitstream coverage determines how many bits in the configuration bit space have been covered by tests. This
metric is not itself a primary result of the tests, but it serves as a sanity check for the other metrics. By the end of
the test suites, we expect that nearly all PIP bits will have been touched, and that some reasonable subset of the
logic setting bits will also have been touched.

In a hypothetical case where 100 % of logic settings and 100 % of PIPs were covered, we would expect to find
nearly 100 % of the bitstream bits used. To not find a very high coverage of bitstream bits would imply that a
correspondingly large percentage of logic settings or PIPs or undocumented features were not covered.
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Bitstream coverage tracking begins by counting the number of configuration frames in the bitstream. It then looks
up the number of bits in each configuration frame, and flags each bit as initially unused. The flags reside within an
internal bitmap of structure comparable to the bitstream.

As the bitstream coverage code visits every bitstream in the test suite, for every configuration bit used in a bit-
stream, the corresponding unused flag is cleared. The bitstream flags still marked unused after inspection of each
test suite are reported to the user. The final percent coverage is 100 % minus the number of unused bits divided
by the total number of configuration bits in the bitstream.

6.4 Operation

The coverage verification utility can be run on any combination of XDL files, bitstream files, and directories. Every
directory encountered is scanned for subdirectories, and any XDL or bitstream files along the way are processed.
When all relevant files have been processed, the final coverage metrics are presented to the user.
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7 Coverage

The test generation code was originally tested on a mid-sized XC7Z020 Zynq device. While computing the in-
terconnect coverage metrics for the XC7K160T, a problem was uncovered with the interconnect test generation.
More specifically, the test generation forced the desired PIPs into the test nets, but relied on par to create paths
to and from them. In a large number of cases, par simply retained those PIPs while creating other paths, such
that many of the PIPs were never exercised but would have reported success in hardware.

We believe that the interconnect test approach is sound, but the test generation depends too strongly on par to
complete the nets without being able to adequately control par. Our team is working on correcting this, but it will
very likely require developing a Torc-based router and route replicator instead of relying on par.

Table 7.1: Coverage results for XC7K160T.

Category Covered Uncovered Total % Covered Sites Covered % Covered

Logic Values 11,824,550 2,041,543 13,866,093 85.28 25,351 of 29,679 85.41
Category Covered Uncovered Total % Covered Tiles Covered % Covered

Tile Wires 10,490,907 7,484,047 17,974,954 <58.63 43,435 of 49,590 87.59
Tile Pips 37,696,479 30,030,267 67,726,746 <55.66 36,257 of 49,590 73.11
Category Covered Uncovered Total % Covered Frames Covered % Covered

Frame Bits 24,941,365 28,050,635 52,992,000 47.07 10,670 of 16,560 64.43

Table 7.1 shows upper bounds on wire and PIP coverage (58.63 % and 55.66 %), because we know that par
is currently bypassing an unknown number of PIPs. Even if these percentages were correct, they are still very
low and consequently explain why the percentage of covered frame bits is so low. The frame bit coverage would
automatically increase with greater PIP coverage.

The percentages of tiles covered for wires and PIPs (87.59 % and 73.11 %) indicate how many tiles are impacted
by the interconnect tests. This a reflection of the number of tiles that contain SLICEL and SLICEM interconnect,
and the number of neighboring tiles that support parts of the routing. These numbers can only increase if we
provide coverage for additional logic sites or if we drive PIPs from other tiles and use special foldback PIPs.

It should be noted that there are actually 47,229 logic sites the XC7K160T device, but 17,550 of those are TIEOFF
sites that drive HARD1, HARD0, or WEAK1 and have no configuration settings. If these TIEOFF sites were
included, then the percentage of total sites covered would be 53.68 %.
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8 Conclusion

8.1 Revisions

The generation of interconnect tests needs to be rewritten as a Torc-based utility. For a given PIP that approach
will allow us to create a single route from a slice to the PIP and from that PIP back to the slice. In some cases
the route will spill out of the INT tile. As long as no route contains the same wire name in more than one tile, then
the route can be replicated across all of the INT tiles. This revision is the most pressing and critical need in the
independent functional testing effort.

Another feature that has not yet been implemented is the configuration memory testing. This is expected to be
done through configuration and readback with a range of varying patterns.

8.2 Future Work

In addition to the revisions that need to be made, there are many other things that could be done to improve test
scope and coverage and to reduce testing time.

8.2.1 Other Logic Sites

Only SLICEL and SLICEM logic sites are being tested at present, with a resulting coverage of 85.28 % of all logic
settings in the device. This number should increase into the 90 %–95 % range with the addition of BRAM and DSP
sites.

8.2.2 Additional Interconnect

Once the interconnect problems are resolved, the coverage can be pushed still higher by developing tests for the
dedicated clock network. Further coverage would depend upon an in-depth analysis of what PIPs were still not
being covered and a viable approach to include them—this is feasible but has not yet been investigated.

8.2.3 Fault Isolation and Fault Diagnostics

Fault isolation and fault diagnostics were not in scope for this effort, but both could be performed in the future if
necessary.

8.2.4 Testing Time Reduction (PIP Packing)

Testing time is currently bounded by the number of PIPs in an INT tile. By creating paths with multiple PIPs, and
by pruning tests with PIPs that are already fully covered elsewhere, we can significantly decrease the number of
test bitstreams and consequently the testing time.

8.2.5 Testing Time Reduction (Test Order Optimization)

By determining the Hamming distance between bitstreams, we can reorder the tests to reduce the number of
frames that must be reconfigured from one test to another. This allows us to use partial bitstreams, where each
partial is based on the difference from one bitstream to the next, and to further reduce the test time. We believe
this approach to be very promising.

8.2.6 Timing Verification

It is possible to test device timing by sweeping the clock frequency until failure and comparing that frequency to
the expected fabric speed. This could be useful both for binning purposes and for helping determine whether the
device under test is a counterfeit.
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8.2.7 Shorting Fault Model

Testing a device for shorts would be exponentially more complex than testing for stuck-at faults. An appropriate
shorting fault model for the device would need to be developed, and every wire or PIP under test would need
each of its neighbors biased with the opposite polarity. This is made significantly more complex by the fact that we
don’t know which wires or PIPs are adjacent at the VLSI layout level, so we would need to vastly over-specify the
problem.

8.2.8 I/O Pin Testing

Our testing has specifically assumed that I/O pins were unavailable. If we relax that constraint, there are many
aspects of IOBs, SERDES, and pad I/O standards that could be tested with the help of a chip tester or a specially
designed board.
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1 Executive Summary

In this work we explored a novel approach combining on-chip execution and formal methods to exhaustively
discover, explore, and describe the functionality of undocumented features in the DSP48E hard IP unit on the Xilinx
Virtex5 devices. Using a knowledge based discovery approach, we identified 1,518 undocumented modes for
this piece of IP. On-chip circuit analysis then identified the functionality of 1,136 of these modes and also
discovered additional undocumented modes accessible through the bitstream. These previously undocumented
modes are described at the mathematical function level in the appendix herein. These functions include the
output of partial products, output of intermediate shift register values, output internal constants used by the
circuit to perform Boolean logic operations, and several other functionalities. To provide a circuit level description
of the functionality and to address scalability, our approach also utilizes an Isomorphic Sub-circuit Extraction
technique based on formal methods to find and remove common circuits between the version of the circuit model
derived from the documentation and the version of the circuit model derived from the empirical on-chip testing.
The Isomorphioc Sub-circuit Extraction technique proved to reduce the evaluation state space by a factor of
25 to 215 depending on the input circuits. Overall, this study was extremely effective and further research into
evaluating other IP types or processor types is waranted.
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2 Introduction

Modern integrated circuit devices have become enormously complex. In scale, there are now many devices that
are over 1 billion transistors in size. Additionally, with so many transistors available, silicon devices are largely
complex System-on-Chip devices and becoming very heterogeneous in terms of underlying circuitry and features.
In many respects, commercial Field Programmable Gates Arrays are at the forefront of these trends. They have
had devices over 1 billion transistors shipped since 2014, and the number of heterogeneous Hard IP blocks
available to an end user has steadily increased with each generation. Today, there are over 15 types of FPGA
Hard IP features exposed to the user, and several more which only the vendors are aware of.

These undisclosed features have become more prevalent in the sub 65nm fabrication era. As fabrication costs
have escalated with each node and pressures for time to market have increased, industry increasingly has used
the current generation device to do trial runs of next-generation architecture features. If the feature works, they
enable support for it in the current generation. If not, they deprecate the access to these features, usually through
compilers or CAD tools, learn from their mistakes, and attempt an improved design in the next generation device.
A prominent example of this is Xilinx’s System Monitor, or SYSMON, hard IP block which is supposed to provide
limited analog to digital conversion and temperature sensing. The block was implemented in VLSI for the Virtex-4,
it was not implemented correctly, was deprecated from being enabled in Xilinx’s CAD tools, and then was re-
designed and supported in Virtex-5. The PowerPC cache parity circuit is another feature which was attempted in
both the Xilinx Virtex-4FX and 5FX, but did not work in either generation, and access was disabled in software,
even though the circuitry exists in hardware. Also, vendors will also seek to reduce NRE costs by re-using masks
for similar products but enabling different features either through software support or packaging. A recent discovery
was that both Xilinx and Altera do not tape out a new mask for each package size and instead deactivate I/O that
are present in the mask, but not connected to the package. The CAD software that deactivates these can easily
be circumvented and unbonded I/O can be driven. In addition, there are many built in self tests (BISTS) and other
yield diagnostics that are built into devices that are not explained to the end user.

Usually these undocumented features are the product of industry operating in a highly cost competitive market,
and these features are not inserted with malicious intent by the corporation. However, this does not preclude the
event in our global market place that a foreign adversary cannot put in a malicious feature, or that a well intentioned
errata does not result in a security vulnerability. In fact, there is a well known example of an FPGA vendor leaving
in a backdoor to its bitstream through the JTAG interface [1]. Additionally in the radiation hardened Xilinx Virtex-5
part, the embedded PowerPC was disabled in the latter stages of development, leading to many open questions
as to how completely it was disabled and if it could be somehow activated.

The military in particular is a heavy user of FPGAs. The Deputy Assistant Secretary of Defense (Systems Engi-
neering) recently presented that 72% of DoD ICs are non ASICs, and that these are largely FPGA devices. The
F-35 is comprised of over 200 FPGA devices, consisting of 64 different FPGA types, as compared to 9 different
ASIC types [2]. However, the DoD now represents only a small fraction, <10%, of the FPGA industry’s market.
This makes it difficult for the DoD to have much influence into the security features or development processes that
the FPGA industry adapts.

Given this environment, it is imperative that DoD have independent mechanisms to test and verify FPGA function-
ality, independent of the vendors, which is non-destructive, and scalable to billion transistor levels. Our approach
leverages several key insights:

• Unlike other COTS processors (Intel, ARM, etc), FPGAs have a rich set of circuit level documentation in
user’s guides and patents that can bootstrap knowledge about the underlying circuitry to a great extent.

• FPGA devices are fully programmable, meaning using custom tools such as USC/ISI’s Torc tools, the physi-
cal device can be extensively probed and intentionally set into undocumented modes to determine undocu-
mented outputs.
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• Formal methods typically utilized for circuit validation can be adapted to finding differences between docu-
mented and observed behaviors.

These insights are especially true if the end goal is to identify undocumented functionality, and not the impossible
problem of finding differences in exact implemented circuitry when the true implemented circuit is not known.
USC/ISI’s approach, detailed in Figure 2.1, consists of four key stages: Knowledge-based Partitioning, Behavioral
Modeling, On-chip Circuit Analysis, and Isomorphic Sub-circuit Extraction.

In Knowledge-based Partitioning, a thorough analysis of the known sources is performed for the FPGA’s hard
IP, such as user manuals and patents. From this analysis a Behavioral Model can be developed and refined to
describe the vendor specified functionality of the hard IP. The analysis also provides insight into how to perform
On-chip Circuit Analysis to develop an empirical circuit model that more accurately reflects the functionality of the
actual hard IP circuit when running in states not allowed, or supported, by the vendor. Comparing the resulting two
models can yield an extremely large state space search. While Knowledge Based Partitioning initially subdivided
this problem into valid and unspecified functional modes, a further state space reduction is required. To address
this the last stage in our approach uses Isomorphic Sub-circuit Extraction with graph-based formal methods, to
determine equivalent circuits and remove them from the search space. The result is the final difference in the two
circuits, or in this case the undocumented functionality.

For this work, the DSP48Es in the Xilinx Virtex-5 devices were selected as the hard IP under investigation. The
following sections provide an overview of the DSP48E’s hard IP module (Chapter 3), a more detailed descrip-
tion of the technical approach (Chapter 4), the experimental results (Chapter 5), and a summary of our findings
(Chapter 6).

Coverage	  Reports	  Coverage	  Reports	  
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Circuit	  
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Isomorphic	  Sub-‐circuit	  Extrac9on	  	  
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Figure 2.1: USC/ISI’s Functional Discovery Tool Suite
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3 Overview of Evaluated Hard IP

3.1 Undocumented Functionality Description

Under this study, the DSP48 hard IP in the Xilinx Virtex-5 devices is used as a test case for discovering undoc-
umented functionality. Undocumented functionality refers to the behavior of the evaluated IP when operating in
modes that are explicitly listed as illegal or invalid by the vendor’s user guides and documentation. Moreover, in
certain cases the vendor may omit the behavior of the IP by not documenting that additional modes even exist. In
all of these cases this study considers when both the input modes and the output behavior are not defined by the
vendor, the resulting functionality is undocumented.

3.2 Xilinx DSP48E Hard IP Block

The DSP48E is a hard IP block implemented in the VLSI of the FPGA device of the Virtex-5 FPGA, seen in
Figure 3.1. The DSP48E block was selected for investigation because it has a long heritage across FPGA families,
and is of a moderate sized complexity for a reasonably sized study. Multiplier units were first introduced in the
Virtex-2 series. Each new generation of Virtex devices has seen the multiplier unit become more complex and
adding new functionality, to the point where in Virtex-5 they were renamed to DSP blocks. The Virtex-5 DSP
block includes multiplication, multiply and accumulate (MACC), three-input add, barrel shift, wide-bus multiplexing,
magnitude comparator, bit-wise logic functions, pattern detection, and wide counters.

Cascade	  Circuit	   Mul.plier	  

Arithme.c	  Logic	  Unit	   Register	  Output	  

Opera.on	  	  
Mode	  Logic	  

Pa;ern	  	  
Detec.on	  Logic	  

Figure 3.1: Block diagram of the Virtex-5 DSP48E IP broken into sub-circuits

The architecture also supports cascading multiple DSP48E slices to form wide math functions, DSP filters, and
complex arithmetic without the use of general FPGA fabric [3]. With this heritage, the DSP is a good candidate to
contain either new features that the vendor decided to be pushed to Virtex-6, or legacy features and errata from
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(A) (B)

Figure 3.2: (A) Primitive diagram for DSP48E top-level I/O and (B) cascade sub-circuit circuit block diagram

previous generations that due to design costs were not cleanly re-designed. The size of this IP block is also ideal
for this initial study as it is much more complex than the programmable fabric, but less complex than other hard IP
on the device, such as the EMACs or embedded processors. Finally, as described below, even a cursory glance
at the DSP48 user’s guide reveals several undocumented modes.

In the Virtex-5 XC5VLX110T FPGA that is on the XUPv5 Development Board[4] there are 64 DSP48E blocks
spanning a single column in the device. In the largest Virtex-5, the XC5VSX240T FPGA, there are 1056 DSP48E
blocks split across 11 columns. Techniques developed as part of this work have been setup to support any Virtex-
5 device, and have are scalable to evaluate multiple DSP blocks in parallel, at run-time. The DSP48E primitive,
implemented in a user design, has 335 input/output signals which include both control and data signals. A majority
of these signals include the A, B, and C input operands and P output resultant, shown in Figure 3.2(A).

3.3 DSP48E’s Cascade Circuitry

The DSP48E block’s functionality for certain behaviors, such as cascading pipeline registers, is explicitly config-
ured through the primitive parameter settings. During the design’s implementation, these parameters are turned
into bitstream configuration bits. Unlike data or control inputs, the configuration bits do not change during the
design’s run-time. An example of the parameters used in the cascade section of the DSP is shown in Table 3.2(B),
which comes from the Xilinx User Guide 193, Table 1-5.

From Table 3.1 it is observed that the User Guide only describes valid states for AREG/BREG and ACASCREG/B-
CASCREG, along with the expected functionality. There is no mention of the functionality when using undocu-
mented parameters. An undocumented example would be assigning 0 to AREG and 1 to ACASCREG. In fact, of
the nine possible settings, only four are listed in the User Guide as being valid, the remaining five are not specified
or not allowed by the conventional vendor tool flow. The true behavior of the functionality can be hypothesized
by looking at the detailed circuit, illustrated in Figure 3.2(B); however, this level of documentation is not always
provided, and it may be incomplete. Table 3.2 lists the legal modes for a given configuration combination for the A
and B cascade circuits of the DSP48E block. Overall, the ten undocumented modes for A and B input’s as part of
the cascade circuit will be evaluated as part of this effort, five modes for A and five modes for B. The results of the
study of the undocumented modes of the cascade register are presented in Chapter 5.
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Table 3.1: DPS48E Cascade circuit valid configuration settings from Xilinx UG193

Table 3.2: A and B cascade register parameters based on UG193

REG CASCREG Mode

0 0 Legal
0 1 Undocumented
0 2 Undocumented
1 0 Undocumented
1 1 Legal
2 0 Undocumented
2 0 Undocumented
2 1 Legal
2 2 Legal

Table 3.3: DPS48E Operating Mode control bit select Z multiplexer configuration settings from Xilinx UG193

3.4 DSP48E’s ALU and Operation Mode Circuitry

This work observes that in addition to several cascade circuit settings the run-time values for the ALU and Opera-
tion (Op) mode inputs are not fully specified by the vendor. From Figure 3.2(A) the total number of bits for the ALU
mode is 4 and the Op mode has 7. This leaves 2048 (211) possible combinations for the ALU and Op mode that
would need to be specified in order to have no undocumented modes. Unlike the cascade circuit, these run-time
parameters are user specific and can change during the execution of the design at run-time. From UG193 only a
subset of the 2048 combinations are actually specified. In fact, only 1508 valid modes are documented. Table 3.3
further illustrates this by explicitly showing the Illegal selection note (from Table 1-8 in UG193) for OPMODE set-
tings with respect to the output for the Z multiplexer. Especially for control signals, such as the OPMODE, the
vendor tools have no ability to check designs at run-time to verify proper usage. Instead, if the OPMODE[6:4] bits
are set to ’111’ the user has no guarantee what the output of the Z multiplexer will be. In Chapter 4 the technical
approach for not only identifying the number of undocumented modes, but also their behavior is presented.
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4 Technical Approach

As previously mentioned, USC/ISI’s approach, detailed more fully in Figure 4.1, combines four key stages: Knowl-
edge based Partitioning, Behavioral Modeling, On-chip Circuit Analysis, and Isomorphic Sub-circuit Extraction, in
order to identify undocumented functionality and extract differences in implemented circuitry. Knowledge-based
Partitioning, Behavioral Modeling, and On-chip Circuit Analysis are utilized to develop models of the FPGA hard IP
from known sources and then compared against the actual behavior of the device while in operation. Isomorphic
Sub-circuit Extraction uses graph-based formal methods to determine equivalent circuits and remove them from
the search space, with the result being the final difference in the two circuits. In effect, these differences are the
undocumented functionality. The following sections provide more detail on each processing step.

4.1 Knowledge-based Partitioning

The analysis begins with knowledge based partitioning. The IP block is manually subdivided into units that can be
further reduced in complexity. Figure 4.2 illustrates the basic flow that is taken for the DSP48E hard IP block. This
is accomplished through the analysis of documentation, user guides, patents, or any vendor provided simulation
models which suggest sub-block functionality of the IP. Fortunately, FPGA documentation is largely provided at the
circuit level, so it is easily decomposable into viable sub-blocks, from which documented behavioral models are
constructed. The DSP48E blocks have been presented in Figure 3.1. The approach is well suited for FPGAs which
are developed with modularity in tile type (Slice, BlockRAM, DSP etc...). For the DSP48E, the raw functionality
is broken down into the following atomic units: cascade circuity, 25-bit×18-bit multiplier, operation mode logic,
arithmetic logic unit, register output, and pattern detection logic, as highlighted in the figure. Behavioral models
replicating the documented behavior are then developed manually.

The Knowledge-based partitioning stage also yields a summary of the number of undocumented modes there are
for the DSP48E, shown in Table 4.1. The rest of this work will describe the efforts to describe the behavior of these
modes.
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Figure 4.1: ISI’s functional discovery tool
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Figure 4.2: Knowledge-based Partitioning Flow

Table 4.1: Summary of undocumented modes from knowledge based partitioning

DSP48E sub-circuit Undocumented Modes

Cascade Register:
A Input sub-circuit 5
B Input sub-circuit 5

Operation Mode Logic:
X Operand Multiplexer 268
Y Operand Multiplexer 512
Z Operand Multiplexer 728

Arithmetic Logic Unit: * Evaluated with of Op Mode *

Register Output 0

Pattern Detection Logic 0

Multiplier 0

Total Undocumented Modes: 1518

4.2 Behavioral Modeling

Once the atomic sub-blocks have been identified, behavioral models are created. Presently, this is a manually
process which involves constructing VHDL and Verilog simulation models, independent of any vendor models.
Since the behavioral models rely on documented information describing the functionality, the model is intended
only to capture valid modes specified by the vendor. An example of the DSP48’s cascade circuit model is shown in
Listing 4.1. Test vectors are used to validate the model using commodity tools to perform automated test pattern
generation. The model is synthesized using Synopsys Design Compiler to generate a netlist to be used by the
isomorphic sub-circuit extraction stage.
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Listing 4.1: Example Verilog code produced as part of the Knowledge-based Partitioning Flow
1 / / =========================================
2 / / Behav iora l model o f DSP’ s cascade c i r c u i t
3 / / =========================================
4 module cascade dsp
5 (
6 clock , / / c lock
7 reset , / / rese t
8 enable , / / enable
9 in , / / data i npu t

10 r e g c t r l , / / REG con f i g
11 c r e g c t r l , / / CASCREG con f i g
12 out , / / Output to MULT
13 cout / / COUT
14 ) ;
15
16 / / I npu t po r t s
17 input clock , reset , enable ;
18 input [ 2 : 0 ] i n ;
19 input [ 1 : 0 ] r e g c t r l , c r e g c t r l ;
20
21 / / Output po r t s
22 output [ 2 : 0 ] out , cout ;
23
24 / / Wires and regs
25 wire clock , reset , enable ;
26 wire [ 2 : 0 ] in , out , cout ;
27 wire [ 1 : 0 ] r e g c t r l , c r e g c t r l ;
28 reg [ 2 : 0 ] r0 , r1 ;
29 wire [ 2 : 0 ] g0 , g1 , g2 , g3 ;
30 wire [ 2 : 0 ] rg0 , rg1 ;
31 wire sel0 , sel1 , se l2 ;
32 reg se l0 r , se l1 r , s e l 2 r ;
33
34 / / I npu t output
35 assign g0 = i n ;
36 assign out = g2 ;
37 assign cout = g3 ;
38
39 / / Reg is te r outputs
40 assign rg0 = r0 ;
41 assign rg1 = r1 ;
42
43 / / Mux se lec t s
44 assign se l0 = s e l 0 r ;
45 assign se l1 = s e l 1 r ;
46 assign se l2 = s e l 2 r ;
47
48 / / Muxes
49 assign g1 = sel0 ? rg0 : g0 ;
50 assign g2 = sel1 ? rg1 : g0 ;
51 assign g3 = sel2 ? g2 : g1 ;
52
53 / / Cont ro l l o g i c f o r mux se lec t s
54 always @ (∗ )
55 begin
56 i f ( r e g c t r l == 2 ’b00 && c r e g c t r l == 2 ’b00 ) begin
57 s e l 0 r <= 0;
58 s e l 1 r <= 0;
59 s e l 2 r <= 0;
60 end
61 else i f ( r e g c t r l == 2 ’b01 && c r e g c t r l == 2 ’b01 ) begin
62 s e l 0 r <= 0;
63 s e l 1 r <= 1;
64 s e l 2 r <= 1;
65 end
66 else i f ( r e g c t r l == 2 ’b10 && c r e g c t r l == 2 ’b01 ) begin
67 s e l 0 r <= 1;
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68 s e l 1 r <= 1;
69 s e l 2 r <= 0;
70 end
71 else i f ( r e g c t r l == 2 ’b10 && c r e g c t r l == 2 ’b10 ) begin
72 s e l 0 r <= 1;
73 s e l 1 r <= 1;
74 s e l 2 r <= 1;
75 end
76 end
77
78 / / Reg is ters
79 always @ ( posedge c lock )
80 begin
81 i f ( rese t == 1) begin
82 r0 <= 0;
83 r1 <= 0;
84 end
85 else i f ( enable == 1) begin
86 r0 <= g0 ;
87 r1 <= g1 ;
88 end
89 end
90 endmodule

4.3 On-Chip Circuit Analysis

In order to understand the actual functionality of the IP block, USC/ISI utilizes on-chip circuit analysis to selectively
configure, probe, and analyze the empirical behavior. A suite of tools has been developed to identify illegal
bitstream configurations for the IP block and to provide run-time testing on an actual device. The tool flow is
presented in Figure 4.3. In a form of reverse validation, the bitstream configuration settings for the IP are isolated
to determine if any additional parameters are possible beyond what is suggested in the IP’s user guide. An
example of this would be if the user guide covered 7 configurations, which requires 3-bits (23=8 settings), leaving
one setting unaccounted for. The tool flow identifies the missing setting and generate a bitstream for on-chip
testing to compare against the behavior model. While this is a general example, Chapter 5 presents results of this
tool to uncover undocumented behavior with the DSP48 Hard IP block.

ISI’s developed on-chip circuit analysis tool flow consists of the normal Xilinx Development Flow, which includes
Synthesis, Implementation, and BitGen. This flow can be implemented in a conventional ISE project or through
the commandline via a Makefile. The output of the normal flow is the initial.bit bitstream that will perform the
original design behavior. The design can be modified after the Implementation stage leveraging Torc to change
the Hard IP block’s configuration attributes. Once the modifications are made BitGen is again performed to create
new modified.bit bitstreams. The Bitstream Diff tool is then used to compare the different bitstreams to identify
which bits are not covered by the available configurations of the IP block. These locations are stored for further

Figure 4.3: On-chip circuit analysis tool flow
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Figure 4.4: On-chip circuit analysis run-time infrastructure for DSP48E evaluation

analysis during the on-chip run-time testing, described next.

In addition to illegal bitstream configurations, the knowledge based partitioning provides undocumented modes
from the IP block’s datasheets, user guides, and patents. A majority of these modes are configurable at run-
time, requiring a sophisticated on-chip testing infrastructure. ISI has developed an extensive testing methodology
to evaluate the DSP48 block for the purposes of this work. This infrastructure is depicted in Figure 4.4. The
on-chip testing leverages active partial reconfiguration to selectively re-configure just the bitstream configuration
corresponding to the IP block under test to accelerate the overall testing. During each test run-time data is
collected to provide insight into the outputs of the experiment. In the example of the DSP48 block the outputs of
the product and accum register are stored by the MicroBlaze processor in memory. Upon the test’s completion
this run-time data is collected and analyzed through functionality scripts to determine whether the probed behavior
matches the expected hypothesized behavior or is unexpected behavior. The behavioral model developed during
the Knowledge-based partitioning is then updated to reflect the changes based on the on-chip testing to generate
the empirical model. These two models are then used in the Isomorphic Sub-circuit Extraction stage.

4.4 Isomorphic Sub-circuit Extraction

The state space reduction approach relies on the hypothesis that given a representative netlist (empirical), if
the known fundamental-circuits in the netlist can be identified and formally verified, then significant state space
reduction can be achieved. This would then enable further/future reverse-validation techniques to inspect the
remaining netlist components for malicious/undesired behavior. Towards this, a graph mining algorithm and tools
have been developed to search for instances of known fundamental-circuit structures (such as multiplexers) in a
larger netlist (such as the cascade circuit, or Operation model logic in a DSP module), in order to achieve state
space reduction and formal verification. The single graph based frequent sub-graph mining (SGFSM) algorithm,
is shown in Figure 4.5.

The algorithm consumes two netlists: (a) The fundamental module/circuit to be mined, for example a 2:1 Mux in
the form of a synthesized Verilog netlist, and (b) a large netlist that is expected to contain one or more instances
of the fundamental module. For example, this can be a component of the DSP48E of the Virtex-5 FPGA, such
as the cascade component, which contains three instances of a 2:1 Mux along with several registers and other
control circuits (as previously seen in Figure 3.2(B)).

The synthesized netlist of the fundamental module (termed as the ’small’ netlist/graph) is initially seeded, by
selecting the net with the largest connectivity. Often this is the net with the largest fan-out. This seed, initial
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Figure 4.5: Flow chart of the single graph based frequent sub-graph mining algorithm

sub-graph, is then grown into larger sub-graphs, by applying a set of instructions: Add cells, Add nets, and
Connect nets. Through this process, the sequence of instructions and the resulting suite of sub-graphs are
recorded/memorized for processing the larger netlist.

The next step in the algorithm seeks to find potentially identical copies of the seed net in the large netlist/graph.
This initial search does not seek anything other than a wire with the same number of connections, regardless of
the gates/std-cells that it connects to. Next, the sequence of growth instructions previously memorized, is applied
in a formal verification loop. I.E. each time the tuple of instructions (add cells, add nets, and connect cells) is
applied on the potentially-identical- seeds of the larger netlist, the sub-graph (as a Verilog netlist) is compared
against the peer sub-graph from the small netlist.

The comparison is performed using Synopsys formal verification tool, Formality. A caveat to note is since Formality
requires explicit binding of either input ports, or output ports prior to a formal verification process, the algorithm
involves an implicit port binding process. A second caveat to note is that Formality, primarily intended for minor
circuit changes (known as engineering change orders), is being used for entirely different purposes. This poses a
challenge of mimicking routine Formality user practices, such as absorbing inverters at outputs or inputs to mitigate
logic inversions. The algorithm uses an implicit process (a Python script) to automatically explore or discard the
process of inverter absorption.

If the formal verification process passes the candidate sub-graph, then it is inspected for isomorphism. This implies
that a perfect and complete match has been found in the large netlist. If this check yields an incomplete match,
the algorithm continues to iterate through the sub-graph growth process, until either a match is found or the growth
stalls due to a complete failure to grow any further. At this point, the mining process stops and the matched sub-
graphs (partial or isomorphic) are deleted from the large netlist. This process reduces the state space of the large
netlist, thus allowing for either a small state space based manual/alternate inspection for functional mismatch,
or subsequent mining of other fundamental modules. The algorithm terminates by generating a report of the
candidates mined, and coverage obtained.

To better illustrate how the Isomorphic Sub-circuit Extraction works. We provide two examples of the process
operating on the ALU-input control circuit and the cascade control circuit of the DSP48E.
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Figure 4.6: ALU-input control circuit of DSP hardIP in Virtex-5 FPGA and its synthesized netlist (with Mux resolu-
tion limited to 5-bit, for brevity)

4.4.1 Example 1

In this example, the large netlist under consideration is the ALU-input control circuit (highlighted in red in Figure 4.6)
and its synthesized version is obtained through Synopsys Design Compiler using a 45nm standard cell library is
also shown in Figure 4.6. It should be noted that the Virtex V is 90nm technology. We utilized 45nm as that was
the cell library available to us under this effort, and as our techniques are focused on identifying behvaior, we
are interested in a representative cell library, not the exact cell library. The behavioral model used to generate
the large netlist, leveraged the discovery of the undocumented features via the on-chip testing methodology and
knowledge-enhancement from relevant Xilinx patents. Specifically, the discrete distributions of the control signals
to the three multiplexers (X, Y, Z) and the redundant case of 110 and 111 for the select lines of the Z-Mux were
considered. The small netlist used to reduce the complexity of the larger circuit was then a 4:1 Mux (shown in
Figure 4.7).

Figure 4.8(A) then shows how the 4:1 Mux was seeded in the ALU-input control circuit in the first growth sequence
and Figure 4.8(B) shows the resulting fully grown sub-graph. The result of the mining (deletion of isomorphic
circuits) is shown in Figure 4.9. The resulting netlist belongs to the 5:1 Z Mux, achieving a state space reduction
of [215].

4.4.2 Example 2

The second example uses the cascade control circuit (highlighted in red in Figure 4.10) as the large circuit in the
Isomorphic Sub-circuit Extraction process. The synthesized version obtained through Synopsys Design Compiler
using a 45nm standard cell library is also shown in Figure 4.10. The behavioral model used to generate the large
netlist, leveraged the discovery of the undocumented features via the on-chip testing methodology and knowledge-
enhancement from relevant Xilinx patents. The small netlist used to reduce the complexity of the larger circuit was
then a 2:1 Mux (shown in Figure 4.11).

The result of mining (isomorphic candidates are deleted) the 2:1 mux from the cascade control circuit is shown in
Figure 4.12. The resulting netlists belong to the registers and other control circuits. Therefore for each 2:1 5-bit
Mux that was mined, the algorithm achieved a state space reduction of [25].

4.5 Output

Overall, the Isomorphic Sub-circuit Extraction can be used in this manner to remove common elements from
the documented netlist resulting from the Behavioral Modeling stage and the empirical netlist resulting from the
On-chip Circuit Analysis stage. The result, is a behavioral description of the undocumented functionality of the
circuit.
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Figure 4.7: Synthesized small netlist of a 4:1 Mux (5-bit)

(a) (b)

Figure 4.8: (a) Seed net and cells from initial sub-graph growth sequence and (b) Sub-graph after two iterations
of growth sequence
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Figure 4.9: Isomorphic 4:1 Multiplexers mined and deleted from the ALU-input control circuits netlist

Figure 4.10: Cascade control circuit of DSP hardIP in Virtex- 5 FPGA and its synthesis
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Figure 4.11: Synthesized small netlist of a 2:1 Mux (5-bit)
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Figure 4.12: Isomorphic 2:1 Multiplexers mined and deleted from the Cascade control circuits netlist
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5 Experimental Results

Using the developed on-chip testing infrastructure a total of 1136 out of the 1518 undocumented modes have
been tested on the DSP48E block of a Virtex5 FPGA. This covers 74.8% of the undocumented states, as seen in
Table 5.1. The remaining 25.2%, predominately on the Z Operand Multiplexer, have been intentionally ignored as
the scope of this effort was only to evaluate 33.3% of the undocumented modes and was not due to any underlying
technical approach issue. The techniques developed as part of this effort could be used to finish evaluating the
unevaluated modes as part of future work.

This study uncovered several interesting results. To briefly summarize them, the cascade circuit was originally con-
sidered to only consist of five undocumented modes, as described in Section 3.3. However, through bitstream anal-
ysis two additional undocumented modes were discovered, resulting in seven evaluated undocumented modes for
each of the A and B cascade circuits, more details of which are presented in Section 5.1.

In addition to the cascade register, the ALU and Operation mode circuit analysis identified the capability of extract-
ing partial product outputs from the multiplier, intermediate shift register values, and even internal constants used
by the circuit to perform Boolean logic operations. These behaviors are not strictly malicious or illegal; however,
they are clear examples of real functionality not being fully disclosed by the vendor. See Section 5.2 for additional
information on these uncovered undocumented modes.

Figure 3.1 shows the overall user’s guide level circuit of the DSP48E. The introduction of undocumented states
comes from three contributors, the Cascade Circuit, determined by A and B inputs, the Arithmetic Logic Unit,
determined by the ALUMODE input, and the Operation Mode Logic, determined by the OPMODE input. For this
study, the ALUMODE and OPMODE inputs have been evaluated together since the ALU logic operations are
effected by the inputs provided as part of the Operation mode selection.

5.1 Cascade Circuit Results

The Cascade Circuit was first identified to have five undocumented modes for both A and B inputs. On-chip
Circuit Analysis concluded that the four valid modes perform the expected operation. For the undocumented

Table 5.1: Identified undocumented modes using knowledge based partitioning and the resulting on-chip analysis
of undocumented modes totaling 74.8% coverage

Knowledge Based Partitioning On-Chip Circuit Analysis
Identified Undocumented Modes Evaluated Undocumented Modes

Cascade Register:
A Input sub-circuit 5 7
B Input sub-circuit 5 7

Op/ALU Modes:
X Operand Multiplexer 268 268
Y Operand Multiplexer 512 512
Z Operand Multiplexer 728 344

Register Output 0 0

Pattern Detection Logic 0 0

Multiplier 0 0

Total: 1518 1136
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Table 5.2: Cascade Mode Undocumented Mode Testing Summary (full details in Appendix A)

Knowledge Based Partitioning On-Chip Circuit Analysis
Identified Undocumented Modes Evaluated Undocumented Modes

Table 8.1 5 7
Table 8.2 5 7

Total 10 14

modes, only one mode matched the initial behavioral model’s expected functionality. That is to say, based on the
cascade circuits documentation provided by the vendor, the expected behavior that was modeled as a result of the
knowledge based partitioning was incomplete. To create a complete empirical model, on-chip testing was required
and was able to provide complete coverage of the undocumented functionality. This fact emphasizes a limitation
that the vendor documentation does not provide accurate circuit descriptions. While the vendor tools may catch
some of these undocumented modes and prevent a full design from building; this study has further shown it is
possible to manipulate the tools and the design flow to enter these undocumented modes.

Furthermore, ISI’s developed techniques to analyze the bitstreams used during configuration identified two ad-
ditional states that were not covered through the REG and CASC register settings. This results in seven un-
documented modes for the cascade circuit instead of the originally calculated five that was based on the vendor
supplied user guide documentation.

The two additional modes were uncovered by generating a complete list of all possible cascade modes through
XDL configuration, then analyzing the bits in the bitstream that control each mode. It was discovered that three
bits control the cascade registers, yet of the 23 = 8 possible bitstream configurations, ‘110′ and ‘111′ were not
generated (see Tables 8.1 and 8.2 in Appendix A for a full listing of all bitstream configurations). The resulting
undocumented functionality produce one previously unobserved (and undocumented) behavior of AREG/BREG
being able to be bypassed while ACASREG/BCASREG could be enabled. The second undocumented behav-
ior ended up replicating a previously observed mode of both AERG/BREG and ACASCREG/BCASCREG being
bypassed.

In this example, the actual behavior is interesting, but moreover the fact that the techniques could discover the
undocumented functionality indicates the approach is capable of quickly analyzing and identifying supplemental
undocumented modes in other IP blocks. A summary of the cascade circuit testing can be found in Table 5.2,
highlighting the number of undocumented modes evaluated during this study. Additional information on these
modes and their undocumented behavior are listed in Appendix A.

5.2 ALU and Operation Mode Results

In addition to the cascade circuit the ALU and Operation mode run-time settings were evaluated. The Appendix
has the full listing of all undocumented modes and those that were tested under this study. The light blue row
markings highlight the Op Mode and ALU Modes that are undocumented. All rows present the observed outputs
for these modes that were evaluated on real hardware during the run-time on-chip testing.

Due to the run-time nature of the ALU and Operation modes it was possible to quickly evaluate undocumented
modes and determine the resulting functionality. While the Appendix lists out in great detail the undocumented
functionality for each of these modes, this study was able to identify and extract partial product outputs from the
multiplier, intermediate shift register values, and internal constants used by the circuit to perform Boolean logic
operations. Using these undocumented modes it maybe possible to further extract details of the multiplier and
two-stage adder/subtractor circuits, far beyond what is provided by the vendor’s documentation.

Only ALU Modes 1001,1010,1011 were not evaluated during this testing. While all combinations of Op Modes
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Table 5.3: ALU and Op Mode Undocumented Mode Testing Summary (full details in Appendix B)

Table Reference ALU Mode[3:0] Undocumented Modes Undocumented Modes Evaluated

Table 8.4 0000 67 67
Table 8.5 0001 67 67
Table 8.6 0010 67 67
Table 8.7 0011 67 67
Table 8.8 0100 91 91
Table 8.9 0101 91 91
Table 8.10 0110 91 91
Table 8.11 0111 91 91
Table 8.12 1000 128 128
Table 8.13 1001 128 0
Table 8.14 1010 128 0
Table 8.15 1011 128 0
Table 8.16 1100 91 91
Table 8.17 1101 91 91
Table 8.18 1110 91 91
Table 8.19 1111 91 91

Total – 1508 1124

with these ALU modes are undocumented, this study did not dive into these at present. The techniques developed
thus far could be further extended to cover the remaining modes, as well as, be applied to other Hard IP blocks
to provide greater device coverage. Table 5.3 provides a summary of the ALU and Op mode testing results,
highlighting for each ALU mode the number of undocumented modes that were identify and evaluated as part of
this study.
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6 Conclusion

In summary, this study proved very successful on a number of fronts. This is the first known study to utilize on-
chip testing to validate the discovery of undocumented features. This approach proved to be more thorough than
manual analysis and patent review as the discovery of additional modes in the Cascade circuit through bitstream
injection revealed. One of the main focuses of our research here, was to also provide functional descriptions
of what the circuit is doing. Many previous efforts merely provided a gate level description of undocumented
functionality, but gave no indication to the end consumer of the data as to if the functionality was benign or
malicious. In the appendix, we are able to clearly provide the mathematical behavior of all 1,136 evaluated
undocumented modes.

It is important to note that the approach here is well tailored for FPGA devices, where user documentation is often
provided at an abstracted circuit level. We believe this research is an important first step in effective approaches
for discovery of undocumented functionality. For FPGAs, future research can further explore the scalability of this
approach as other, larger and more complicated pieces of IP can be explored. This approach may even be viable
for other processor types, where additional inference steps can address the translation of the even higher level
documentation provided for general purpose processors into behavioral level functionality.
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8 Appendix

A Cascade Circuit Full Results

The DSP48’s A and B cascade circuits were first analyzed and ten modes were initially determined to be undoc-
umented. The run-time on-chip testing performed by USC/ISI validated the outputs as follows. The white rows
indicate documented, valid modes from the vendor documentation. The observed outputs during run-time testing
matched the documented and expected behaviors The light blue highlighted rows indicate modes that are doc-
umentation. For these modes the observed output is recorded based on the run-time on-chip testing. Finally,
the red rows (index modes 9 and 10) have been found through bitstream manipulation and their corresponding
on-chip testing observed outputs are reported. As a result, a total of 14 undocumented modes, for both the A
and B cascade circuits, have been tested and their corresponding observed outputs have been reported, shown
in Tables 8.1 and 8.2.

Table 8.1: A Cascade Register Observed Results

Index Bitstream Configuration[2:0] AREG Observed Output ACAS Observed Output

0 101 0 0
1 001 1 1
2 010 2 1
3 011 2 2
4 000 1 0
5 100 0 0
6 100 0 0
7 000 1 0
8 010 2 1
9 110 0 1
10 111 0 0

Table 8.2: B Cascade Register Observed Results

Index Bitstream Configuration[2:0] BREG Observed Output BCAS Observed Output

0 101 0 0
1 001 1 1
2 010 2 1
3 011 2 2
4 000 1 0
5 100 0 0
6 100 0 0
7 000 1 0
8 010 2 1
9 110 0 1
10 111 0 0

B ALU Op Mode Full Results

The evaluated ALU and Op Modes tested with USC/ISI’s techniques. Table 8.3 provides a description of all of the
terms used throughout Tables 8.4-8.19. Each table represents an specific ALU Mode setting, while each row in
the table represents a specific Op Mode for the given ALU mode. The right column represents what the observed
outputs are for each given mode from run-time on-chip testing. All output cells in white represent valid modes for
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Table 8.3: Terms and descriptions used in ALUMODE Tables 8.4-8.19

Term Description

PP1 Multiplier partial product 1
PP2 Multiplier partial product 2
P Data output from second stage ALU
A:B 30-bit A and 18-bit B inputs concatenated together to second stage of ALU
C 48-bit data input to second stage of ALU
RS PCIN Cascaded data input from PCOUT of previous DSP48E shifted right 17-bits
RS P P shifted right 17-bits
0 48-bit vector of 0’s
48‘FFFFFFFFFFFF 48-bit vector of 1’s
+ ALU addition
- ALU subtraction
* Multiplication
⊕ Logic XOR
∧ Logic AND
∨ Logic OR
¬ Logic NOT

the given ALU and Op mode settings, from the documentation. The value in the cell represents the observed or
expected output. Undocumented modes not specified by the documentation or explicitly stated as illegal modes
have their cells highlighted in light blue. The value of the cell represents what was determined as the functionality
based on the knowledge-based partitioning and on-chip testing.

Table 8.4: ALUMODE 0000 Observed Results

OP Modes Observed OutputsZ Y X
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 PP1
0 0 0 0 0 1 0 P
0 0 0 0 0 1 1 A : B
0 0 0 0 1 0 0 PP2
0 0 0 0 1 0 1 PP1 + PP2
0 0 0 0 1 1 0 P + PP2
0 0 0 0 1 1 1 A : B + PP2
0 0 0 1 0 0 0 48‘FFFFFFFFFFFF
0 0 0 1 0 0 1 PP1 + 48‘FFFFFFFFFFFF
0 0 0 1 0 1 0 P + 48‘FFFFFFFFFFFF
0 0 0 1 0 1 1 A : B + 48‘FFFFFFFFFFFF
0 0 0 1 1 0 0 C
0 0 0 1 1 0 1 PP1 + C
0 0 0 1 1 1 0 P + C
0 0 0 1 1 1 1 A : B + C
0 0 1 0 0 0 0 0 + PCIN
0 0 1 0 0 0 1 PP1 + PCIN
0 0 1 0 0 1 0 P + PCIN
0 0 1 0 0 1 1 A : B + PCIN
0 0 1 0 1 0 0 PP2 + PCIN
0 0 1 0 1 0 1 PP1 + PP2 + PCIN
0 0 1 0 1 1 0 P + PP2 + PCIN
0 0 1 0 1 1 1 A : B + PP2 + PCIN
0 0 1 1 0 0 0 48‘FFFFFFFFFFFF + PCIN
0 0 1 1 0 0 1 PP1 + 48‘FFFFFFFFFFFF + PCIN
0 0 1 1 0 1 0 P + 48‘FFFFFFFFFFFF + PCIN
0 0 1 1 0 1 1 A : B + 48‘FFFFFFFFFFFF + PCIN
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Table 8.4: ALUMODE 0000 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
0 0 1 1 1 0 0 C + PCIN
0 0 1 1 1 0 1 PP1 + C + PCIN
0 0 1 1 1 1 0 P + C + PCIN
0 0 1 1 1 1 1 A : B + C + PCIN
0 1 0 0 0 0 0 0 + P
0 1 0 0 0 0 1 PP1 + P
0 1 0 0 0 1 0 P + P
0 1 0 0 0 1 1 A : B + P
0 1 0 0 1 0 0 PP2 + P
0 1 0 0 1 0 1 PP1 + PP2 + P
0 1 0 0 1 1 0 P + PP2 + P
0 1 0 0 1 1 1 A : B + PP2 + P
0 1 0 1 0 0 0 48‘FFFFFFFFFFFF + P
0 1 0 1 0 0 1 PP1 + 48‘FFFFFFFFFFFF + P
0 1 0 1 0 1 0 P + 48‘FFFFFFFFFFFF + P
0 1 0 1 0 1 1 A : B + 48‘FFFFFFFFFFFF + P
0 1 0 1 1 0 0 C + P
0 1 0 1 1 0 1 PP1 + C + P
0 1 0 1 1 1 0 P + C + P
0 1 0 1 1 1 1 A : B + C + P
0 1 1 0 0 0 0 0 + C
0 1 1 0 0 0 1 PP1 + C
0 1 1 0 0 1 0 P + C
0 1 1 0 0 1 1 A : B + C
0 1 1 0 1 0 0 PP2 + C
0 1 1 0 1 0 1 PP1 + PP2 + C
0 1 1 0 1 1 0 P + PP2 + C
0 1 1 0 1 1 1 A : B + PP2 + C
0 1 1 1 0 0 0 48‘FFFFFFFFFFFF + C
0 1 1 1 0 0 1 PP1 + 48‘FFFFFFFFFFFF + C
0 1 1 1 0 1 0 P + 48‘FFFFFFFFFFFF + C
0 1 1 1 0 1 1 A : B + 48‘FFFFFFFFFFFF + C
0 1 1 1 1 0 0 C + C
0 1 1 1 1 0 1 PP1 + C + C
0 1 1 1 1 1 0 P + C + C
0 1 1 1 1 1 1 A : B + C + C
1 0 0 0 0 0 0 0 + P
1 0 0 0 0 0 1 PP1 + P
1 0 0 0 0 1 0 P + P
1 0 0 0 0 1 1 A : B + P
1 0 0 0 1 0 0 PP2 + P
1 0 0 0 1 0 1 PP1 + PP2 + P
1 0 0 0 1 1 0 P + PP2 + P
1 0 0 0 1 1 1 A : B + PP2 + P
1 0 0 1 0 0 0 48‘FFFFFFFFFFFF + P
1 0 0 1 0 0 1 PP1 + 48‘FFFFFFFFFFFF + P
1 0 0 1 0 1 0 P + 48‘FFFFFFFFFFFF + P
1 0 0 1 0 1 1 A : B + 48‘FFFFFFFFFFFF + P
1 0 0 1 1 0 0 C + P
1 0 0 1 1 0 1 PP1 + C + P
1 0 0 1 1 1 0 P + C + P
1 0 0 1 1 1 1 A : B + C + P
1 0 1 0 0 0 0 0 +RS PCIN
1 0 1 0 0 0 1 PP1 +RS PCIN
1 0 1 0 0 1 0 P +RS PCIN
1 0 1 0 0 1 1 A : B +RS PCIN
1 0 1 0 1 0 0 PP2 +RS PCIN
1 0 1 0 1 0 1 PP1 + PP2 +RS PCIN
1 0 1 0 1 1 0 P + PP2 +RS PCIN
1 0 1 0 1 1 1 A : B + PP2 +RS PCIN
1 0 1 1 0 0 0 48‘FFFFFFFFFFFF +RS PCIN
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Table 8.4: ALUMODE 0000 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
1 0 1 1 0 0 1 PP1 + 48‘FFFFFFFFFFFF +RS PCIN
1 0 1 1 0 1 0 P + 48‘FFFFFFFFFFFF +RS PCIN
1 0 1 1 0 1 1 A : B + 48‘FFFFFFFFFFFF +RS PCIN
1 0 1 1 1 0 0 C +RS PCIN
1 0 1 1 1 0 1 PP1 + C +RS PCIN
1 0 1 1 1 1 0 P + C +RS PCIN
1 0 1 1 1 1 1 A : B + C +RS PCIN
1 1 0 0 0 0 0 0 +RS P
1 1 0 0 0 0 1 PP1 +RS P
1 1 0 0 0 1 0 P +RS P
1 1 0 0 0 1 1 A : B +RS P
1 1 0 0 1 0 0 PP2 +RS P
1 1 0 0 1 0 1 PP1 + PP2 +RS P
1 1 0 0 1 1 0 P + PP2 +RS P
1 1 0 0 1 1 1 A : B + PP2 +RS P
1 1 0 1 0 0 0 48‘FFFFFFFFFFFF +RS P
1 1 0 1 0 0 1 PP1 + 48‘FFFFFFFFFFFF +RS P
1 1 0 1 0 1 0 P + 48‘FFFFFFFFFFFF +RS P
1 1 0 1 0 1 1 A : B + 48‘FFFFFFFFFFFF +RS P
1 1 0 1 1 0 0 C +RS P
1 1 0 1 1 0 1 PP1 + C +RS P
1 1 0 1 1 1 0 P + C +RS P
1 1 0 1 1 1 1 A : B + C +RS P
1 1 1 0 0 0 0 0 +RS P
1 1 1 0 0 0 1 PP1 +RS P
1 1 1 0 0 1 0 P +RS P
1 1 1 0 0 1 1 A : B +RS P
1 1 1 0 1 0 0 PP2 +RS P
1 1 1 0 1 0 1 PP1 + PP2 +RS P
1 1 1 0 1 1 0 P + PP2 +RS P
1 1 1 0 1 1 1 A : B + PP2 +RS P
1 1 1 1 0 0 0 48‘FFFFFFFFFFFF +RS P
1 1 1 1 0 0 1 PP1 + 48‘FFFFFFFFFFFF +RS P
1 1 1 1 0 1 0 P + 48‘FFFFFFFFFFFF +RS P
1 1 1 1 0 1 1 A : B + 48‘FFFFFFFFFFFF +RS P
1 1 1 1 1 0 0 C +RS P
1 1 1 1 1 0 1 PP1 + C +RS P
1 1 1 1 1 1 0 P + C +RS P
1 1 1 1 1 1 1 A : B + C +RS P

Table 8.5: ALUMODE 0001 Observed Results

OP Modes Observed OutputsZ Y X
0 0 0 0 0 0 0 −(0)− 1
0 0 0 0 0 0 1 −(PP1)− 1
0 0 0 0 0 1 0 −(P )− 1
0 0 0 0 0 1 1 −(A : B)− 1
0 0 0 0 1 0 0 −(PP2)− 1
0 0 0 0 1 0 1 −(PP1 + PP2)− 1
0 0 0 0 1 1 0 −(P + PP2)− 1
0 0 0 0 1 1 1 −(A : B + PP2)− 1
0 0 0 1 0 0 0 −(48‘FFFFFFFFFFFF )− 1
0 0 0 1 0 0 1 −(PP1 + 48‘FFFFFFFFFFFF )− 1
0 0 0 1 0 1 0 −(P + 48‘FFFFFFFFFFFF )− 1
0 0 0 1 0 1 1 −(A : B + 48‘FFFFFFFFFFFF )− 1
0 0 0 1 1 0 0 −(C)− 1
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Table 8.5: ALUMODE 0001 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
0 0 0 1 1 0 1 −(PP1 + C)− 1
0 0 0 1 1 1 0 −(P + C)− 1
0 0 0 1 1 1 1 −(A : B + C)− 1
0 0 1 0 0 0 0 −PCIN + (0)− 1
0 0 1 0 0 0 1 −PCIN + (PP1)− 1
0 0 1 0 0 1 0 −PCIN + (P )− 1
0 0 1 0 0 1 1 −PCIN + (A : B)− 1
0 0 1 0 1 0 0 −PCIN + (PP2)− 1
0 0 1 0 1 0 1 −PCIN + (PP1 + PP2)− 1
0 0 1 0 1 1 0 −PCIN + (P + PP2)− 1
0 0 1 0 1 1 1 −PCIN + (A : B + PP2)− 1
0 0 1 1 0 0 0 −PCIN + (48‘FFFFFFFFFFFF )− 1
0 0 1 1 0 0 1 −PCIN + (PP1 + 48‘FFFFFFFFFFFF )− 1
0 0 1 1 0 1 0 −PCIN + (P + 48‘FFFFFFFFFFFF )− 1
0 0 1 1 0 1 1 −PCIN + (A : B + 48‘FFFFFFFFFFFF )− 1
0 0 1 1 1 0 0 −PCIN + (C)− 1
0 0 1 1 1 0 1 −PCIN + (PP1 + C)− 1
0 0 1 1 1 1 0 −PCIN + (P + C)− 1
0 0 1 1 1 1 1 −PCIN + (A : B + C)− 1
0 1 0 0 0 0 0 −P + (0)− 1
0 1 0 0 0 0 1 −P + (PP1)− 1
0 1 0 0 0 1 0 −P + (P )− 1
0 1 0 0 0 1 1 −P + (A : B)− 1
0 1 0 0 1 0 0 −P + (PP2)− 1
0 1 0 0 1 0 1 −P + (PP1 + PP2)− 1
0 1 0 0 1 1 0 −P + (P + PP2)− 1
0 1 0 0 1 1 1 −P + (A : B + PP2)− 1
0 1 0 1 0 0 0 −P + (48‘FFFFFFFFFFFF )− 1
0 1 0 1 0 0 1 −P + (PP1 + 48‘FFFFFFFFFFFF )− 1
0 1 0 1 0 1 0 −P + (P + 48‘FFFFFFFFFFFF )− 1
0 1 0 1 0 1 1 −P + (A : B + 48‘FFFFFFFFFFFF )− 1
0 1 0 1 1 0 0 −P + (C)− 1
0 1 0 1 1 0 1 −P + (PP1 + C)− 1
0 1 0 1 1 1 0 −P + (P + C)− 1
0 1 0 1 1 1 1 −P + (A : B + C)− 1
0 1 1 0 0 0 0 −C + (0)− 1
0 1 1 0 0 0 1 −C + (PP1)− 1
0 1 1 0 0 1 0 −C + (P )− 1
0 1 1 0 0 1 1 −C + (A : B)− 1
0 1 1 0 1 0 0 −C + (PP2)− 1
0 1 1 0 1 0 1 −C + (PP1 + PP2)− 1
0 1 1 0 1 1 0 −C + (P + PP2)− 1
0 1 1 0 1 1 1 −C + (A : B + PP2)− 1
0 1 1 1 0 0 0 −C + (48‘FFFFFFFFFFFF )− 1
0 1 1 1 0 0 1 −C + (PP1 + 48‘FFFFFFFFFFFF )− 1
0 1 1 1 0 1 0 −C + (P + 48‘FFFFFFFFFFFF )− 1
0 1 1 1 0 1 1 −C + (A : B + 48‘FFFFFFFFFFFF )− 1
0 1 1 1 1 0 0 −C + (C)− 1
0 1 1 1 1 0 1 −C + (PP1 + C)− 1
0 1 1 1 1 1 0 −C + (P + C)− 1
0 1 1 1 1 1 1 −C + (A : B + C)− 1
1 0 0 0 0 0 0 −P + (0)− 1
1 0 0 0 0 0 1 −P + (PP1)− 1
1 0 0 0 0 1 0 −P + (P )− 1
1 0 0 0 0 1 1 −P + (A : B)− 1
1 0 0 0 1 0 0 −P + (PP2)− 1
1 0 0 0 1 0 1 −P + (PP1 + PP2)− 1
1 0 0 0 1 1 0 −P + (P + PP2)− 1
1 0 0 0 1 1 1 −P + (A : B + PP2)− 1
1 0 0 1 0 0 0 −P + (48‘FFFFFFFFFFFF )− 1
1 0 0 1 0 0 1 −P + (PP1 + 48‘FFFFFFFFFFFF )− 1
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Table 8.5: ALUMODE 0001 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
1 0 0 1 0 1 0 −P + (P + 48‘FFFFFFFFFFFF )− 1
1 0 0 1 0 1 1 −P + (A : B + 48‘FFFFFFFFFFFF )− 1
1 0 0 1 1 0 0 −P + (C)− 1
1 0 0 1 1 0 1 −P + (PP1 + C)− 1
1 0 0 1 1 1 0 −P + (P + C)− 1
1 0 0 1 1 1 1 −P + (A : B + C)− 1
1 0 1 0 0 0 0 −RS PCIN + (0)− 1
1 0 1 0 0 0 1 −RS PCIN + (PP1)− 1
1 0 1 0 0 1 0 −RS PCIN + (P )− 1
1 0 1 0 0 1 1 −RS PCIN + (A : B)− 1
1 0 1 0 1 0 0 −RS PCIN + (PP2)− 1
1 0 1 0 1 0 1 −RS PCIN + (PP1 + PP2)− 1
1 0 1 0 1 1 0 −RS PCIN + (P + PP2)− 1
1 0 1 0 1 1 1 −RS PCIN + (A : B + PP2)− 1
1 0 1 1 0 0 0 −RS PCIN + (48‘FFFFFFFFFFFF )− 1
1 0 1 1 0 0 1 −RS PCIN + (PP1 + 48‘FFFFFFFFFFFF )− 1
1 0 1 1 0 1 0 −RS PCIN + (P + 48‘FFFFFFFFFFFF )− 1
1 0 1 1 0 1 1 −RS PCIN + (A : B + 48‘FFFFFFFFFFFF )− 1
1 0 1 1 1 0 0 −RS PCIN + (C)− 1
1 0 1 1 1 0 1 −RS PCIN + (PP1 + C)− 1
1 0 1 1 1 1 0 −RS PCIN + (P + C)− 1
1 0 1 1 1 1 1 −RS PCIN + (A : B + C)− 1
1 1 0 0 0 0 0 −RS P + (0)− 1
1 1 0 0 0 0 1 −RS P + (PP1)− 1
1 1 0 0 0 1 0 −RS P + (P )− 1
1 1 0 0 0 1 1 −RS P + (A : B)− 1
1 1 0 0 1 0 0 −RS P + (PP2)− 1
1 1 0 0 1 0 1 −RS P + (PP1 + PP2)− 1
1 1 0 0 1 1 0 −RS P + (P + PP2)− 1
1 1 0 0 1 1 1 −RS P + (A : B + PP2)− 1
1 1 0 1 0 0 0 −RS P + (48‘FFFFFFFFFFFF )− 1
1 1 0 1 0 0 1 −RS P + (PP1 + 48‘FFFFFFFFFFFF )− 1
1 1 0 1 0 1 0 −RS P + (P + 48‘FFFFFFFFFFFF )− 1
1 1 0 1 0 1 1 −RS P + (A : B + 48‘FFFFFFFFFFFF )− 1
1 1 0 1 1 0 0 −RS P + (C)− 1
1 1 0 1 1 0 1 −RS P + (PP1 + C)− 1
1 1 0 1 1 1 0 −RS P + (P + C)− 1
1 1 0 1 1 1 1 −RS P + (A : B + C)− 1
1 1 1 0 0 0 0 −RS P + (0)− 1
1 1 1 0 0 0 1 −RS P + (PP1)− 1
1 1 1 0 0 1 0 −RS P + (P )− 1
1 1 1 0 0 1 1 −RS P + (A : B)− 1
1 1 1 0 1 0 0 −RS P + (PP2)− 1
1 1 1 0 1 0 1 −RS P + (PP1 + PP2)− 1
1 1 1 0 1 1 0 −RS P + (P + PP2)− 1
1 1 1 0 1 1 1 −RS P + (A : B + PP2)− 1
1 1 1 1 0 0 0 −RS P + (48‘FFFFFFFFFFFF )− 1
1 1 1 1 0 0 1 −RS P + (PP1 + 48‘FFFFFFFFFFFF )− 1
1 1 1 1 0 1 0 −RS P + (P + 48‘FFFFFFFFFFFF )− 1
1 1 1 1 0 1 1 −RS P + (A : B + 48‘FFFFFFFFFFFF )− 1
1 1 1 1 1 0 0 −RS P + (C)− 1
1 1 1 1 1 0 1 −RS P + (PP1 + C)− 1
1 1 1 1 1 1 0 −RS P + (P + C)− 1
1 1 1 1 1 1 1 −RS P + (A : B + C)− 1
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Table 8.6: ALUMODE 0010 Observed Results

OP Modes Observed OutputsZ Y X
0 0 0 0 0 0 0 −0− 0− 0− 0− 1
0 0 0 0 0 0 1 −0− PP1− 0− 0− 1
0 0 0 0 0 1 0 −0− P − 0− 0− 1
0 0 0 0 0 1 1 −0−A : B − 0− 0− 1
0 0 0 0 1 0 0 −0− 0− PP2− 0− 1
0 0 0 0 1 0 1 −0− PP1− PP2− 0− 1
0 0 0 0 1 1 0 −0− P − PP2− 0− 1
0 0 0 0 1 1 1 −0−A : B − PP2− 0− 1
0 0 0 1 0 0 0 −0− 0− 48‘FFFFFFFFFFFF − 0− 1
0 0 0 1 0 0 1 −0− PP1− 48‘FFFFFFFFFFFF − 0− 1
0 0 0 1 0 1 0 −0− P − 48‘FFFFFFFFFFFF − 0− 1
0 0 0 1 0 1 1 −0−A : B − 48‘FFFFFFFFFFFF − 0− 1
0 0 0 1 1 0 0 −0− 0− C − 0− 1
0 0 0 1 1 0 1 −0− PP1− C − 0− 1
0 0 0 1 1 1 0 −0− P − C − 0− 1
0 0 0 1 1 1 1 −0−A : B − C − 0− 1
0 0 1 0 0 0 0 −PCIN − 0− 0− 0− 1
0 0 1 0 0 0 1 −PCIN − PP1− 0− 0− 1
0 0 1 0 0 1 0 −PCIN − P − 0− 0− 1
0 0 1 0 0 1 1 −PCIN −A : B − 0− 0− 1
0 0 1 0 1 0 0 −PCIN − 0− PP2− 0− 1
0 0 1 0 1 0 1 −PCIN − PP1− PP2− 0− 1
0 0 1 0 1 1 0 −PCIN − P − PP2− 0− 1
0 0 1 0 1 1 1 −PCIN −A : B − PP2− 0− 1
0 0 1 1 0 0 0 −PCIN − 0− 48‘FFFFFFFFFFFF − 0− 1
0 0 1 1 0 0 1 −PCIN − PP1− 48‘FFFFFFFFFFFF − 0− 1
0 0 1 1 0 1 0 −PCIN − P − 48‘FFFFFFFFFFFF − 0− 1
0 0 1 1 0 1 1 −PCIN −A : B − 48‘FFFFFFFFFFFF − 0− 1
0 0 1 1 1 0 0 −PCIN − 0− C − 0− 1
0 0 1 1 1 0 1 −PCIN − PP1− C − 0− 1
0 0 1 1 1 1 0 −PCIN − P − C − 0− 1
0 0 1 1 1 1 1 −PCIN −A : B − C − 0− 1
0 1 0 0 0 0 0 −P − 0− 0− 0− 1
0 1 0 0 0 0 1 −P − PP1− 0− 0− 1
0 1 0 0 0 1 0 −P − P − 0− 0− 1
0 1 0 0 0 1 1 −P −A : B − 0− 0− 1
0 1 0 0 1 0 0 −P − 0− PP2− 0− 1
0 1 0 0 1 0 1 −P − PP1− PP2− 0− 1
0 1 0 0 1 1 0 −P − P − PP2− 0− 1
0 1 0 0 1 1 1 −P −A : B − PP2− 0− 1
0 1 0 1 0 0 0 −P − 0− 48‘FFFFFFFFFFFF − 0− 1
0 1 0 1 0 0 1 −P − PP1− 48‘FFFFFFFFFFFF − 0− 1
0 1 0 1 0 1 0 −P − P − 48‘FFFFFFFFFFFF − 0− 1
0 1 0 1 0 1 1 −P −A : B − 48‘FFFFFFFFFFFF − 0− 1
0 1 0 1 1 0 0 −P − 0− C − 0− 1
0 1 0 1 1 0 1 −P − PP1− C − 0− 1
0 1 0 1 1 1 0 −P − P − C − 0− 1
0 1 0 1 1 1 1 −P −A : B − C − 0− 1
0 1 1 0 0 0 0 −C − 0− 0− 0− 1
0 1 1 0 0 0 1 −C − PP1− 0− 0− 1
0 1 1 0 0 1 0 −C − P − 0− 0− 1
0 1 1 0 0 1 1 −C −A : B − 0− 0− 1
0 1 1 0 1 0 0 −C − 0− PP2− 0− 1
0 1 1 0 1 0 1 −C − PP1− PP2− 0− 1
0 1 1 0 1 1 0 −C − P − PP2− 0− 1
0 1 1 0 1 1 1 −C −A : B − PP2− 0− 1
0 1 1 1 0 0 0 −C − 0− 48‘FFFFFFFFFFFF − 0− 1
0 1 1 1 0 0 1 −C − PP1− 48‘FFFFFFFFFFFF − 0− 1
0 1 1 1 0 1 0 −C − P − 48‘FFFFFFFFFFFF − 0− 1
0 1 1 1 0 1 1 −C −A : B − 48‘FFFFFFFFFFFF − 0− 1
0 1 1 1 1 0 0 −C − 0− C − 0− 1
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Table 8.6: ALUMODE 0010 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
0 1 1 1 1 0 1 −C − PP1− C − 0− 1
0 1 1 1 1 1 0 −C − P − C − 0− 1
0 1 1 1 1 1 1 −C −A : B − C − 0− 1
1 0 0 0 0 0 0 −P − 0− 0− 0− 1
1 0 0 0 0 0 1 −P − PP1− 0− 0− 1
1 0 0 0 0 1 0 −P − P − 0− 0− 1
1 0 0 0 0 1 1 −P −A : B − 0− 0− 1
1 0 0 0 1 0 0 −P − 0− PP2− 0− 1
1 0 0 0 1 0 1 −P − PP1− PP2− 0− 1
1 0 0 0 1 1 0 −P − P − PP2− 0− 1
1 0 0 0 1 1 1 −P −A : B − PP2− 0− 1
1 0 0 1 0 0 0 −P − 0− 48‘FFFFFFFFFFFF − 0− 1
1 0 0 1 0 0 1 −P − PP1− 48‘FFFFFFFFFFFF − 0− 1
1 0 0 1 0 1 0 −P − P − 48‘FFFFFFFFFFFF − 0− 1
1 0 0 1 0 1 1 −P −A : B − 48‘FFFFFFFFFFFF − 0− 1
1 0 0 1 1 0 0 −P − 0− C − 0− 1
1 0 0 1 1 0 1 −P − PP1− C − 0− 1
1 0 0 1 1 1 0 −P − P − C − 0− 1
1 0 0 1 1 1 1 −P −A : B − C − 0− 1
1 0 1 0 0 0 0 −RS PCIN − 0− 0− 0− 1
1 0 1 0 0 0 1 −RS PCIN − PP1− 0− 0− 1
1 0 1 0 0 1 0 −RS PCIN − P − 0− 0− 1
1 0 1 0 0 1 1 −RS PCIN −A : B − 0− 0− 1
1 0 1 0 1 0 0 −RS PCIN − 0− PP2− 0− 1
1 0 1 0 1 0 1 −RS PCIN − PP1− PP2− 0− 1
1 0 1 0 1 1 0 −RS PCIN − P − PP2− 0− 1
1 0 1 0 1 1 1 −RS PCIN −A : B − PP2− 0− 1
1 0 1 1 0 0 0 −RS PCIN − 0− 48‘FFFFFFFFFFFF − 0− 1
1 0 1 1 0 0 1 −RS PCIN − PP1− 48‘FFFFFFFFFFFF − 0− 1
1 0 1 1 0 1 0 −RS PCIN − P − 48‘FFFFFFFFFFFF − 0− 1
1 0 1 1 0 1 1 −RS PCIN −A : B − 48‘FFFFFFFFFFFF − 0− 1
1 0 1 1 1 0 0 −RS PCIN − 0− C − 0− 1
1 0 1 1 1 0 1 −RS PCIN − PP1− C − 0− 1
1 0 1 1 1 1 0 −RS PCIN − P − C − 0− 1
1 0 1 1 1 1 1 −RS PCIN −A : B − C − 0− 1
1 1 0 0 0 0 0 −RS P − 0− 0− 0− 1
1 1 0 0 0 0 1 −RS P − PP1− 0− 0− 1
1 1 0 0 0 1 0 −RS P − P − 0− 0− 1
1 1 0 0 0 1 1 −RS P −A : B − 0− 0− 1
1 1 0 0 1 0 0 −RS P − 0− PP2− 0− 1
1 1 0 0 1 0 1 −RS P − PP1− PP2− 0− 1
1 1 0 0 1 1 0 −RS P − P − PP2− 0− 1
1 1 0 0 1 1 1 −RS P −A : B − PP2− 0− 1
1 1 0 1 0 0 0 −RS P − 0− 48‘FFFFFFFFFFFF − 0− 1
1 1 0 1 0 0 1 −RS P − PP1− 48‘FFFFFFFFFFFF − 0− 1
1 1 0 1 0 1 0 −RS P − P − 48‘FFFFFFFFFFFF − 0− 1
1 1 0 1 0 1 1 −RS P −A : B − 48‘FFFFFFFFFFFF − 0− 1
1 1 0 1 1 0 0 −RS P − 0− C − 0− 1
1 1 0 1 1 0 1 −RS P − PP1− C − 0− 1
1 1 0 1 1 1 0 −RS P − P − C − 0− 1
1 1 0 1 1 1 1 −RS P −A : B − C − 0− 1
1 1 1 0 0 0 0 −RS P − 0− 0− 0− 1
1 1 1 0 0 0 1 −RS P − PP1− 0− 0− 1
1 1 1 0 0 1 0 −RS P − P − 0− 0− 1
1 1 1 0 0 1 1 −RS P −A : B − 0− 0− 1
1 1 1 0 1 0 0 −RS P − 0− PP2− 0− 1
1 1 1 0 1 0 1 −RS P − PP1− PP2− 0− 1
1 1 1 0 1 1 0 −RS P − P − PP2− 0− 1
1 1 1 0 1 1 1 −RS P −A : B − PP2− 0− 1
1 1 1 1 0 0 0 −RS P − 0− 48‘FFFFFFFFFFFF − 0− 1
1 1 1 1 0 0 1 −RS P − PP1− 48‘FFFFFFFFFFFF − 0− 1
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Table 8.6: ALUMODE 0010 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
1 1 1 1 0 1 0 −RS P − P − 48‘FFFFFFFFFFFF − 0− 1
1 1 1 1 0 1 1 −RS P −A : B − 48‘FFFFFFFFFFFF − 0− 1
1 1 1 1 1 0 0 −RS P − 0− C − 0− 1
1 1 1 1 1 0 1 −RS P − PP1− C − 0− 1
1 1 1 1 1 1 0 −RS P − P − C − 0− 1
1 1 1 1 1 1 1 −RS P −A : B − C − 0− 1

Table 8.7: ALUMODE 0011 Observed Results

OP Modes Observed OutputsZ Y X
0 0 0 0 0 0 0 −0− 0− 0− 0− 1
0 0 0 0 0 0 1 −0− PP1− 0− 0− 1
0 0 0 0 0 1 0 −0− P − 0− 0− 1
0 0 0 0 0 1 1 −0−A : B − 0− 0− 1
0 0 0 0 1 0 0 −0− 0− PP2− 0− 1
0 0 0 0 1 0 1 −0− PP1− PP2− 0− 1
0 0 0 0 1 1 0 −0− P − PP2− 0− 1
0 0 0 0 1 1 1 −0−A : B − PP2− 0− 1
0 0 0 1 0 0 0 −0− 0− 48‘FFFFFFFFFFFF − 0− 1
0 0 0 1 0 0 1 −0− PP1− 48‘FFFFFFFFFFFF − 0− 1
0 0 0 1 0 1 0 −0− P − 48‘FFFFFFFFFFFF − 0− 1
0 0 0 1 0 1 1 −0−A : B − 48‘FFFFFFFFFFFF − 0− 1
0 0 0 1 1 0 0 −0− 0− C − 0− 1
0 0 0 1 1 0 1 −0− PP1− C − 0− 1
0 0 0 1 1 1 0 −0− P − C − 0− 1
0 0 0 1 1 1 1 −0−A : B − C − 0− 1
0 0 1 0 0 0 0 −PCIN − 0− 0− 0− 1
0 0 1 0 0 0 1 −PCIN − PP1− 0− 0− 1
0 0 1 0 0 1 0 −PCIN − P − 0− 0− 1
0 0 1 0 0 1 1 −PCIN −A : B − 0− 0− 1
0 0 1 0 1 0 0 −PCIN − 0− PP2− 0− 1
0 0 1 0 1 0 1 −PCIN − PP1− PP2− 0− 1
0 0 1 0 1 1 0 −PCIN − P − PP2− 0− 1
0 0 1 0 1 1 1 −PCIN −A : B − PP2− 0− 1
0 0 1 1 0 0 0 −PCIN − 0− 48‘FFFFFFFFFFFF − 0− 1
0 0 1 1 0 0 1 −PCIN − PP1− 48‘FFFFFFFFFFFF − 0− 1
0 0 1 1 0 1 0 −PCIN − P − 48‘FFFFFFFFFFFF − 0− 1
0 0 1 1 0 1 1 −PCIN −A : B − 48‘FFFFFFFFFFFF − 0− 1
0 0 1 1 1 0 0 −PCIN − 0− C − 0− 1
0 0 1 1 1 0 1 −PCIN − PP1− C − 0− 1
0 0 1 1 1 1 0 −PCIN − P − C − 0− 1
0 0 1 1 1 1 1 −PCIN −A : B − C − 0− 1
0 1 0 0 0 0 0 −P − 0− 0− 0− 1
0 1 0 0 0 0 1 −P − PP1− 0− 0− 1
0 1 0 0 0 1 0 −P − P − 0− 0− 1
0 1 0 0 0 1 1 −P −A : B − 0− 0− 1
0 1 0 0 1 0 0 −P − 0− PP2− 0− 1
0 1 0 0 1 0 1 −P − PP1− PP2− 0− 1
0 1 0 0 1 1 0 −P − P − PP2− 0− 1
0 1 0 0 1 1 1 −P −A : B − PP2− 0− 1
0 1 0 1 0 0 0 −P − 0− 48‘FFFFFFFFFFFF − 0− 1
0 1 0 1 0 0 1 −P − PP1− 48‘FFFFFFFFFFFF − 0− 1
0 1 0 1 0 1 0 −P − P − 48‘FFFFFFFFFFFF − 0− 1
0 1 0 1 0 1 1 −P −A : B − 48‘FFFFFFFFFFFF − 0− 1
0 1 0 1 1 0 0 −P − 0− C − 0− 1
0 1 0 1 1 0 1 −P − PP1− C − 0− 1
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Table 8.7: ALUMODE 0011 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
0 1 0 1 1 1 0 −P − P − C − 0− 1
0 1 0 1 1 1 1 −P −A : B − C − 0− 1
0 1 1 0 0 0 0 −C − 0− 0− 0− 1
0 1 1 0 0 0 1 −C − PP1− 0− 0− 1
0 1 1 0 0 1 0 −C − P − 0− 0− 1
0 1 1 0 0 1 1 −C −A : B − 0− 0− 1
0 1 1 0 1 0 0 −C − 0− PP2− 0− 1
0 1 1 0 1 0 1 −C − PP1− PP2− 0− 1
0 1 1 0 1 1 0 −C − P − PP2− 0− 1
0 1 1 0 1 1 1 −C −A : B − PP2− 0− 1
0 1 1 1 0 0 0 −C − 0− 48‘FFFFFFFFFFFF − 0− 1
0 1 1 1 0 0 1 −C − PP1− 48‘FFFFFFFFFFFF − 0− 1
0 1 1 1 0 1 0 −C − P − 48‘FFFFFFFFFFFF − 0− 1
0 1 1 1 0 1 1 −C −A : B − 48‘FFFFFFFFFFFF − 0− 1
0 1 1 1 1 0 0 −C − 0− C − 0− 1
0 1 1 1 1 0 1 −C − PP1− C − 0− 1
0 1 1 1 1 1 0 −C − P − C − 0− 1
0 1 1 1 1 1 1 −C −A : B − C − 0− 1
1 0 0 0 0 0 0 −P − 0− 0− 0− 1
1 0 0 0 0 0 1 −P − PP1− 0− 0− 1
1 0 0 0 0 1 0 −P − P − 0− 0− 1
1 0 0 0 0 1 1 −P −A : B − 0− 0− 1
1 0 0 0 1 0 0 −P − 0− PP2− 0− 1
1 0 0 0 1 0 1 −P − PP1− PP2− 0− 1
1 0 0 0 1 1 0 −P − P − PP2− 0− 1
1 0 0 0 1 1 1 −P −A : B − PP2− 0− 1
1 0 0 1 0 0 0 −P − 0− 48‘FFFFFFFFFFFF − 0− 1
1 0 0 1 0 0 1 −P − PP1− 48‘FFFFFFFFFFFF − 0− 1
1 0 0 1 0 1 0 −P − P − 48‘FFFFFFFFFFFF − 0− 1
1 0 0 1 0 1 1 −P −A : B − 48‘FFFFFFFFFFFF − 0− 1
1 0 0 1 1 0 0 −P − 0− C − 0− 1
1 0 0 1 1 0 1 −P − PP1− C − 0− 1
1 0 0 1 1 1 0 −P − P − C − 0− 1
1 0 0 1 1 1 1 −P −A : B − C − 0− 1
1 0 1 0 0 0 0 −RS PCIN − 0− 0− 0− 1
1 0 1 0 0 0 1 −RS PCIN − PP1− 0− 0− 1
1 0 1 0 0 1 0 −RS PCIN − P − 0− 0− 1
1 0 1 0 0 1 1 −RS PCIN −A : B − 0− 0− 1
1 0 1 0 1 0 0 −RS PCIN − 0− PP2− 0− 1
1 0 1 0 1 0 1 −RS PCIN − PP1− PP2− 0− 1
1 0 1 0 1 1 0 −RS PCIN − P − PP2− 0− 1
1 0 1 0 1 1 1 −RS PCIN −A : B − PP2− 0− 1
1 0 1 1 0 0 0 −RS PCIN − 0− 48‘FFFFFFFFFFFF − 0− 1
1 0 1 1 0 0 1 −RS PCIN − PP1− 48‘FFFFFFFFFFFF − 0− 1
1 0 1 1 0 1 0 −RS PCIN − P − 48‘FFFFFFFFFFFF − 0− 1
1 0 1 1 0 1 1 −RS PCIN −A : B − 48‘FFFFFFFFFFFF − 0− 1
1 0 1 1 1 0 0 −RS PCIN − 0− C − 0− 1
1 0 1 1 1 0 1 −RS PCIN − PP1− C − 0− 1
1 0 1 1 1 1 0 −RS PCIN − P − C − 0− 1
1 0 1 1 1 1 1 −RS PCIN −A : B − C − 0− 1
1 1 0 0 0 0 0 −RS P − 0− 0− 0− 1
1 1 0 0 0 0 1 −RS P − PP1− 0− 0− 1
1 1 0 0 0 1 0 −RS P − P − 0− 0− 1
1 1 0 0 0 1 1 −RS P −A : B − 0− 0− 1
1 1 0 0 1 0 0 −RS P − 0− PP2− 0− 1
1 1 0 0 1 0 1 −RS P − PP1− PP2− 0− 1
1 1 0 0 1 1 0 −RS P − P − PP2− 0− 1
1 1 0 0 1 1 1 −RS P −A : B − PP2− 0− 1
1 1 0 1 0 0 0 −RS P − 0− 48‘FFFFFFFFFFFF − 0− 1
1 1 0 1 0 0 1 −RS P − PP1− 48‘FFFFFFFFFFFF − 0− 1
1 1 0 1 0 1 0 −RS P − P − 48‘FFFFFFFFFFFF − 0− 1
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Table 8.7: ALUMODE 0011 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
1 1 0 1 0 1 1 −RS P −A : B − 48‘FFFFFFFFFFFF − 0− 1
1 1 0 1 1 0 0 −RS P − 0− C − 0− 1
1 1 0 1 1 0 1 −RS P − PP1− C − 0− 1
1 1 0 1 1 1 0 −RS P − P − C − 0− 1
1 1 0 1 1 1 1 −RS P −A : B − C − 0− 1
1 1 1 0 0 0 0 −RS P − 0− 0− 0− 1
1 1 1 0 0 0 1 −RS P − PP1− 0− 0− 1
1 1 1 0 0 1 0 −RS P − P − 0− 0− 1
1 1 1 0 0 1 1 −RS P −A : B − 0− 0− 1
1 1 1 0 1 0 0 −RS P − 0− PP2− 0− 1
1 1 1 0 1 0 1 −RS P − PP1− PP2− 0− 1
1 1 1 0 1 1 0 −RS P − P − PP2− 0− 1
1 1 1 0 1 1 1 −RS P −A : B − PP2− 0− 1
1 1 1 1 0 0 0 −RS P − 0− 48‘FFFFFFFFFFFF − 0− 1
1 1 1 1 0 0 1 −RS P − PP1− 48‘FFFFFFFFFFFF − 0− 1
1 1 1 1 0 1 0 −RS P − P − 48‘FFFFFFFFFFFF − 0− 1
1 1 1 1 0 1 1 −RS P −A : B − 48‘FFFFFFFFFFFF − 0− 1
1 1 1 1 1 0 0 −RS P − 0− C − 0− 1
1 1 1 1 1 0 1 −RS P − PP1− C − 0− 1
1 1 1 1 1 1 0 −RS P − P − C − 0− 1
1 1 1 1 1 1 1 −RS P −A : B − C − 0− 1

Table 8.8: ALUMODE 0100 Observed Results

OP Modes Observed OutputsZ Y X
0 0 0 0 0 0 0 0⊕ 0⊕ 0
0 0 0 0 0 0 1 0⊕ 0⊕ PP1
0 0 0 0 0 1 0 0⊕ 0⊕ P
0 0 0 0 0 1 1 0⊕ 0⊕A : B
0 0 0 0 1 0 0 0⊕ PP2⊕ 0
0 0 0 0 1 0 1 0⊕ PP2⊕ PP1
0 0 0 0 1 1 0 0⊕ PP2⊕ P
0 0 0 0 1 1 1 0⊕ PP2⊕A : B
0 0 0 1 0 0 0 0⊕ 48‘FFFFFFFFFFFF ⊕ 0
0 0 0 1 0 0 1 0⊕ 48‘FFFFFFFFFFFF ⊕ PP1
0 0 0 1 0 1 0 0⊕ 48‘FFFFFFFFFFFF ⊕ P
0 0 0 1 0 1 1 0⊕ 48‘FFFFFFFFFFFF ⊕A : B
0 0 0 1 1 0 0 0⊕ C ⊕ 0
0 0 0 1 1 0 1 0⊕ C ⊕ PP1
0 0 0 1 1 1 0 0⊕ C ⊕ P
0 0 0 1 1 1 1 0⊕ C ⊕A : B
0 0 1 0 0 0 0 PCIN ⊕ 0⊕ 0
0 0 1 0 0 0 1 PCIN ⊕ 0⊕ PP1
0 0 1 0 0 1 0 PCIN ⊕ 0⊕ P
0 0 1 0 0 1 1 PCIN ⊕ 0⊕A : B
0 0 1 0 1 0 0 PCIN ⊕ PP2⊕ 0
0 0 1 0 1 0 1 PCIN ⊕ PP2⊕ PP1
0 0 1 0 1 1 0 PCIN ⊕ PP2⊕ P
0 0 1 0 1 1 1 PCIN ⊕ PP2⊕A : B
0 0 1 1 0 0 0 PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ 0
0 0 1 1 0 0 1 PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ PP1
0 0 1 1 0 1 0 PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ P
0 0 1 1 0 1 1 PCIN ⊕ 48‘FFFFFFFFFFFF ⊕A : B
0 0 1 1 1 0 0 PCIN ⊕ C ⊕ 0
0 0 1 1 1 0 1 PCIN ⊕ C ⊕ PP1
0 0 1 1 1 1 0 PCIN ⊕ C ⊕ P
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Table 8.8: ALUMODE 0100 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
0 0 1 1 1 1 1 PCIN ⊕ C ⊕A : B
0 1 0 0 0 0 0 P ⊕ 0⊕ 0
0 1 0 0 0 0 1 P ⊕ 0⊕ PP1
0 1 0 0 0 1 0 P ⊕ 0⊕ P
0 1 0 0 0 1 1 P ⊕ 0⊕A : B
0 1 0 0 1 0 0 P ⊕ PP2⊕ 0
0 1 0 0 1 0 1 P ⊕ PP2⊕ PP1
0 1 0 0 1 1 0 P ⊕ PP2⊕ P
0 1 0 0 1 1 1 P ⊕ PP2⊕A : B
0 1 0 1 0 0 0 P ⊕ 48‘FFFFFFFFFFFF ⊕ 0
0 1 0 1 0 0 1 P ⊕ 48‘FFFFFFFFFFFF ⊕ PP1
0 1 0 1 0 1 0 P ⊕ 48‘FFFFFFFFFFFF ⊕ P
0 1 0 1 0 1 1 P ⊕ 48‘FFFFFFFFFFFF ⊕A : B
0 1 0 1 1 0 0 P ⊕ C ⊕ 0
0 1 0 1 1 0 1 P ⊕ C ⊕ PP1
0 1 0 1 1 1 0 P ⊕ C ⊕ P
0 1 0 1 1 1 1 P ⊕ C ⊕A : B
0 1 1 0 0 0 0 C ⊕ 0⊕ 0
0 1 1 0 0 0 1 C ⊕ 0⊕ PP1
0 1 1 0 0 1 0 C ⊕ 0⊕ P
0 1 1 0 0 1 1 C ⊕ 0⊕A : B
0 1 1 0 1 0 0 C ⊕ PP2⊕ 0
0 1 1 0 1 0 1 C ⊕ PP2⊕ PP1
0 1 1 0 1 1 0 C ⊕ PP2⊕ P
0 1 1 0 1 1 1 C ⊕ PP2⊕A : B
0 1 1 1 0 0 0 C ⊕ 48‘FFFFFFFFFFFF ⊕ 0
0 1 1 1 0 0 1 C ⊕ 48‘FFFFFFFFFFFF ⊕ PP1
0 1 1 1 0 1 0 C ⊕ 48‘FFFFFFFFFFFF ⊕ P
0 1 1 1 0 1 1 C ⊕ 48‘FFFFFFFFFFFF ⊕A : B
0 1 1 1 1 0 0 C ⊕ C ⊕ 0
0 1 1 1 1 0 1 C ⊕ C ⊕ PP1
0 1 1 1 1 1 0 C ⊕ C ⊕ P
0 1 1 1 1 1 1 C ⊕ C ⊕A : B
1 0 0 0 0 0 0 P ⊕ 0⊕ 0
1 0 0 0 0 0 1 P ⊕ 0⊕ PP1
1 0 0 0 0 1 0 P ⊕ 0⊕ P
1 0 0 0 0 1 1 P ⊕ 0⊕A : B
1 0 0 0 1 0 0 P ⊕ PP2⊕ 0
1 0 0 0 1 0 1 P ⊕ PP2⊕ PP1
1 0 0 0 1 1 0 P ⊕ PP2⊕ P
1 0 0 0 1 1 1 P ⊕ PP2⊕A : B
1 0 0 1 0 0 0 P ⊕ 48‘FFFFFFFFFFFF ⊕ 0
1 0 0 1 0 0 1 P ⊕ 48‘FFFFFFFFFFFF ⊕ PP1
1 0 0 1 0 1 0 P ⊕ 48‘FFFFFFFFFFFF ⊕ P
1 0 0 1 0 1 1 P ⊕ 48‘FFFFFFFFFFFF ⊕A : B
1 0 0 1 1 0 0 P ⊕ C ⊕ 0
1 0 0 1 1 0 1 P ⊕ C ⊕ PP1
1 0 0 1 1 1 0 P ⊕ C ⊕ P
1 0 0 1 1 1 1 P ⊕ C ⊕A : B
1 0 1 0 0 0 0 RS PCIN ⊕ 0⊕ 0
1 0 1 0 0 0 1 RS PCIN ⊕ 0⊕ PP1
1 0 1 0 0 1 0 RS PCIN ⊕ 0⊕ P
1 0 1 0 0 1 1 RS PCIN ⊕ 0⊕A : B
1 0 1 0 1 0 0 RS PCIN ⊕ PP2⊕ 0
1 0 1 0 1 0 1 RS PCIN ⊕ PP2⊕ PP1
1 0 1 0 1 1 0 RS PCIN ⊕ PP2⊕ P
1 0 1 0 1 1 1 RS PCIN ⊕ PP2⊕A : B
1 0 1 1 0 0 0 RS PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ 0
1 0 1 1 0 0 1 RS PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ PP1
1 0 1 1 0 1 0 RS PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ P
1 0 1 1 0 1 1 RS PCIN ⊕ 48‘FFFFFFFFFFFF ⊕A : B
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Table 8.8: ALUMODE 0100 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
1 0 1 1 1 0 0 RS PCIN ⊕ C ⊕ 0
1 0 1 1 1 0 1 RS PCIN ⊕ C ⊕ PP1
1 0 1 1 1 1 0 RS PCIN ⊕ C ⊕ P
1 0 1 1 1 1 1 RS PCIN ⊕ C ⊕A : B
1 1 0 0 0 0 0 RS P ⊕ 0⊕ 0
1 1 0 0 0 0 1 RS P ⊕ 0⊕ PP1
1 1 0 0 0 1 0 RS P ⊕ 0⊕ P
1 1 0 0 0 1 1 RS P ⊕ 0⊕A : B
1 1 0 0 1 0 0 RS P ⊕ PP2⊕ 0
1 1 0 0 1 0 1 RS P ⊕ PP2⊕ PP1
1 1 0 0 1 1 0 RS P ⊕ PP2⊕ P
1 1 0 0 1 1 1 RS P ⊕ PP2⊕A : B
1 1 0 1 0 0 0 RS P ⊕ 48‘FFFFFFFFFFFF ⊕ 0
1 1 0 1 0 0 1 RS P ⊕ 48‘FFFFFFFFFFFF ⊕ PP1
1 1 0 1 0 1 0 RS P ⊕ 48‘FFFFFFFFFFFF ⊕ P
1 1 0 1 0 1 1 RS P ⊕ 48‘FFFFFFFFFFFF ⊕A : B
1 1 0 1 1 0 0 RS P ⊕ C ⊕ 0
1 1 0 1 1 0 1 RS P ⊕ C ⊕ PP1
1 1 0 1 1 1 0 RS P ⊕ C ⊕ P
1 1 0 1 1 1 1 RS P ⊕ C ⊕A : B
1 1 1 0 0 0 0 RS P ⊕ 0⊕ 0
1 1 1 0 0 0 1 RS P ⊕ 0⊕ PP1
1 1 1 0 0 1 0 RS P ⊕ 0⊕ P
1 1 1 0 0 1 1 RS P ⊕ 0⊕A : B
1 1 1 0 1 0 0 RS P ⊕ PP2⊕ 0
1 1 1 0 1 0 1 RS P ⊕ PP2⊕ PP1
1 1 1 0 1 1 0 RS P ⊕ PP2⊕ P
1 1 1 0 1 1 1 RS P ⊕ PP2⊕A : B
1 1 1 1 0 0 0 RS P ⊕ 48‘FFFFFFFFFFFF ⊕ 0
1 1 1 1 0 0 1 RS P ⊕ 48‘FFFFFFFFFFFF ⊕ PP1
1 1 1 1 0 1 0 RS P ⊕ 48‘FFFFFFFFFFFF ⊕ P
1 1 1 1 0 1 1 RS P ⊕ 48‘FFFFFFFFFFFF ⊕A : B
1 1 1 1 1 0 0 RS P ⊕ C ⊕ 0
1 1 1 1 1 0 1 RS P ⊕ C ⊕ PP1
1 1 1 1 1 1 0 RS P ⊕ C ⊕ P
1 1 1 1 1 1 1 RS P ⊕ C ⊕A : B

Table 8.9: ALUMODE 0101 Observed Results

OP Modes Observed OutputsZ Y X
0 0 0 0 0 0 0 ¬0⊕ 0⊕ 0
0 0 0 0 0 0 1 ¬0⊕ 0⊕ PP1
0 0 0 0 0 1 0 ¬0⊕ 0⊕ P
0 0 0 0 0 1 1 ¬0⊕ 0⊕A : B
0 0 0 0 1 0 0 ¬0⊕ PP2⊕ 0
0 0 0 0 1 0 1 ¬0⊕ PP2⊕ PP1
0 0 0 0 1 1 0 ¬0⊕ PP2⊕ P
0 0 0 0 1 1 1 ¬0⊕ PP2⊕A : B
0 0 0 1 0 0 0 ¬0⊕ 48‘FFFFFFFFFFFF ⊕ 0
0 0 0 1 0 0 1 ¬0⊕ 48‘FFFFFFFFFFFF ⊕ PP1
0 0 0 1 0 1 0 ¬0⊕ 48‘FFFFFFFFFFFF ⊕ P
0 0 0 1 0 1 1 ¬0⊕ 48‘FFFFFFFFFFFF ⊕A : B
0 0 0 1 1 0 0 ¬0⊕ C ⊕ 0
0 0 0 1 1 0 1 ¬0⊕ C ⊕ PP1
0 0 0 1 1 1 0 ¬0⊕ C ⊕ P
0 0 0 1 1 1 1 ¬0⊕ C ⊕A : B
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Table 8.9: ALUMODE 0101 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
0 0 1 0 0 0 0 ¬PCIN ⊕ 0⊕ 0
0 0 1 0 0 0 1 ¬PCIN ⊕ 0⊕ PP1
0 0 1 0 0 1 0 ¬PCIN ⊕ 0⊕ P
0 0 1 0 0 1 1 ¬PCIN ⊕ 0⊕A : B
0 0 1 0 1 0 0 ¬PCIN ⊕ PP2⊕ 0
0 0 1 0 1 0 1 ¬PCIN ⊕ PP2⊕ PP1
0 0 1 0 1 1 0 ¬PCIN ⊕ PP2⊕ P
0 0 1 0 1 1 1 ¬PCIN ⊕ PP2⊕A : B
0 0 1 1 0 0 0 ¬PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ 0
0 0 1 1 0 0 1 ¬PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ PP1
0 0 1 1 0 1 0 ¬PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ P
0 0 1 1 0 1 1 ¬PCIN ⊕ 48‘FFFFFFFFFFFF ⊕A : B
0 0 1 1 1 0 0 ¬PCIN ⊕ C ⊕ 0
0 0 1 1 1 0 1 ¬PCIN ⊕ C ⊕ PP1
0 0 1 1 1 1 0 ¬PCIN ⊕ C ⊕ P
0 0 1 1 1 1 1 ¬PCIN ⊕ C ⊕A : B
0 1 0 0 0 0 0 ¬P ⊕ 0⊕ 0
0 1 0 0 0 0 1 ¬P ⊕ 0⊕ PP1
0 1 0 0 0 1 0 ¬P ⊕ 0⊕ P
0 1 0 0 0 1 1 ¬P ⊕ 0⊕A : B
0 1 0 0 1 0 0 ¬P ⊕ PP2⊕ 0
0 1 0 0 1 0 1 ¬P ⊕ PP2⊕ PP1
0 1 0 0 1 1 0 ¬P ⊕ PP2⊕ P
0 1 0 0 1 1 1 ¬P ⊕ PP2⊕A : B
0 1 0 1 0 0 0 ¬P ⊕ 48‘FFFFFFFFFFFF ⊕ 0
0 1 0 1 0 0 1 ¬P ⊕ 48‘FFFFFFFFFFFF ⊕ PP1
0 1 0 1 0 1 0 ¬P ⊕ 48‘FFFFFFFFFFFF ⊕ P
0 1 0 1 0 1 1 ¬P ⊕ 48‘FFFFFFFFFFFF ⊕A : B
0 1 0 1 1 0 0 ¬P ⊕ C ⊕ 0
0 1 0 1 1 0 1 ¬P ⊕ C ⊕ PP1
0 1 0 1 1 1 0 ¬P ⊕ C ⊕ P
0 1 0 1 1 1 1 ¬P ⊕ C ⊕A : B
0 1 1 0 0 0 0 ¬C ⊕ 0⊕ 0
0 1 1 0 0 0 1 ¬C ⊕ 0⊕ PP1
0 1 1 0 0 1 0 ¬C ⊕ 0⊕ P
0 1 1 0 0 1 1 ¬C ⊕ 0⊕A : B
0 1 1 0 1 0 0 ¬C ⊕ PP2⊕ 0
0 1 1 0 1 0 1 ¬C ⊕ PP2⊕ PP1
0 1 1 0 1 1 0 ¬C ⊕ PP2⊕ P
0 1 1 0 1 1 1 ¬C ⊕ PP2⊕A : B
0 1 1 1 0 0 0 ¬C ⊕ 48‘FFFFFFFFFFFF ⊕ 0
0 1 1 1 0 0 1 ¬C ⊕ 48‘FFFFFFFFFFFF ⊕ PP1
0 1 1 1 0 1 0 ¬C ⊕ 48‘FFFFFFFFFFFF ⊕ P
0 1 1 1 0 1 1 ¬C ⊕ 48‘FFFFFFFFFFFF ⊕A : B
0 1 1 1 1 0 0 ¬C ⊕ C ⊕ 0
0 1 1 1 1 0 1 ¬C ⊕ C ⊕ PP1
0 1 1 1 1 1 0 ¬C ⊕ C ⊕ P
0 1 1 1 1 1 1 ¬C ⊕ C ⊕A : B
1 0 0 0 0 0 0 ¬P ⊕ 0⊕ 0
1 0 0 0 0 0 1 ¬P ⊕ 0⊕ PP1
1 0 0 0 0 1 0 ¬P ⊕ 0⊕ P
1 0 0 0 0 1 1 ¬P ⊕ 0⊕A : B
1 0 0 0 1 0 0 ¬P ⊕ PP2⊕ 0
1 0 0 0 1 0 1 ¬P ⊕ PP2⊕ PP1
1 0 0 0 1 1 0 ¬P ⊕ PP2⊕ P
1 0 0 0 1 1 1 ¬P ⊕ PP2⊕A : B
1 0 0 1 0 0 0 ¬P ⊕ 48‘FFFFFFFFFFFF ⊕ 0
1 0 0 1 0 0 1 ¬P ⊕ 48‘FFFFFFFFFFFF ⊕ PP1
1 0 0 1 0 1 0 ¬P ⊕ 48‘FFFFFFFFFFFF ⊕ P
1 0 0 1 0 1 1 ¬P ⊕ 48‘FFFFFFFFFFFF ⊕A : B
1 0 0 1 1 0 0 ¬P ⊕ C ⊕ 0
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Table 8.9: ALUMODE 0101 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
1 0 0 1 1 0 1 ¬P ⊕ C ⊕ PP1
1 0 0 1 1 1 0 ¬P ⊕ C ⊕ P
1 0 0 1 1 1 1 ¬P ⊕ C ⊕A : B
1 0 1 0 0 0 0 ¬RS PCIN ⊕ 0⊕ 0
1 0 1 0 0 0 1 ¬RS PCIN ⊕ 0⊕ PP1
1 0 1 0 0 1 0 ¬RS PCIN ⊕ 0⊕ P
1 0 1 0 0 1 1 ¬RS PCIN ⊕ 0⊕A : B
1 0 1 0 1 0 0 ¬RS PCIN ⊕ PP2⊕ 0
1 0 1 0 1 0 1 ¬RS PCIN ⊕ PP2⊕ PP1
1 0 1 0 1 1 0 ¬RS PCIN ⊕ PP2⊕ P
1 0 1 0 1 1 1 ¬RS PCIN ⊕ PP2⊕A : B
1 0 1 1 0 0 0 ¬RS PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ 0
1 0 1 1 0 0 1 ¬RS PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ PP1
1 0 1 1 0 1 0 ¬RS PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ P
1 0 1 1 0 1 1 ¬RS PCIN ⊕ 48‘FFFFFFFFFFFF ⊕A : B
1 0 1 1 1 0 0 ¬RS PCIN ⊕ C ⊕ 0
1 0 1 1 1 0 1 ¬RS PCIN ⊕ C ⊕ PP1
1 0 1 1 1 1 0 ¬RS PCIN ⊕ C ⊕ P
1 0 1 1 1 1 1 ¬RS PCIN ⊕ C ⊕A : B
1 1 0 0 0 0 0 ¬RS P ⊕ 0⊕ 0
1 1 0 0 0 0 1 ¬RS P ⊕ 0⊕ PP1
1 1 0 0 0 1 0 ¬RS P ⊕ 0⊕ P
1 1 0 0 0 1 1 ¬RS P ⊕ 0⊕A : B
1 1 0 0 1 0 0 ¬RS P ⊕ PP2⊕ 0
1 1 0 0 1 0 1 ¬RS P ⊕ PP2⊕ PP1
1 1 0 0 1 1 0 ¬RS P ⊕ PP2⊕ P
1 1 0 0 1 1 1 ¬RS P ⊕ PP2⊕A : B
1 1 0 1 0 0 0 ¬RS P ⊕ 48‘FFFFFFFFFFFF ⊕ 0
1 1 0 1 0 0 1 ¬RS P ⊕ 48‘FFFFFFFFFFFF ⊕ PP1
1 1 0 1 0 1 0 ¬RS P ⊕ 48‘FFFFFFFFFFFF ⊕ P
1 1 0 1 0 1 1 ¬RS P ⊕ 48‘FFFFFFFFFFFF ⊕A : B
1 1 0 1 1 0 0 ¬RS P ⊕ C ⊕ 0
1 1 0 1 1 0 1 ¬RS P ⊕ C ⊕ PP1
1 1 0 1 1 1 0 ¬RS P ⊕ C ⊕ P
1 1 0 1 1 1 1 ¬RS P ⊕ C ⊕A : B
1 1 1 0 0 0 0 ¬RS P ⊕ 0⊕ 0
1 1 1 0 0 0 1 ¬RS P ⊕ 0⊕ PP1
1 1 1 0 0 1 0 ¬RS P ⊕ 0⊕ P
1 1 1 0 0 1 1 ¬RS P ⊕ 0⊕A : B
1 1 1 0 1 0 0 ¬RS P ⊕ PP2⊕ 0
1 1 1 0 1 0 1 ¬RS P ⊕ PP2⊕ PP1
1 1 1 0 1 1 0 ¬RS P ⊕ PP2⊕ P
1 1 1 0 1 1 1 ¬RS P ⊕ PP2⊕A : B
1 1 1 1 0 0 0 ¬RS P ⊕ 48‘FFFFFFFFFFFF ⊕ 0
1 1 1 1 0 0 1 ¬RS P ⊕ 48‘FFFFFFFFFFFF ⊕ PP1
1 1 1 1 0 1 0 ¬RS P ⊕ 48‘FFFFFFFFFFFF ⊕ P
1 1 1 1 0 1 1 ¬RS P ⊕ 48‘FFFFFFFFFFFF ⊕A : B
1 1 1 1 1 0 0 ¬RS P ⊕ C ⊕ 0
1 1 1 1 1 0 1 ¬RS P ⊕ C ⊕ PP1
1 1 1 1 1 1 0 ¬RS P ⊕ C ⊕ P
1 1 1 1 1 1 1 ¬RS P ⊕ C ⊕A : B

Table 8.10: ALUMODE 0110 Observed Results

OP Modes Observed OutputsZ Y X
0 0 0 0 0 0 0 ¬(0⊕ 0⊕ 0)
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Table 8.10: ALUMODE 0110 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
0 0 0 0 0 0 1 ¬(0⊕ 0⊕ PP1)
0 0 0 0 0 1 0 ¬(0⊕ 0⊕ P )
0 0 0 0 0 1 1 ¬(0⊕ 0⊕A : B)
0 0 0 0 1 0 0 ¬(0⊕ PP2⊕ 0)
0 0 0 0 1 0 1 ¬(0⊕ PP2⊕ PP1)
0 0 0 0 1 1 0 ¬(0⊕ PP2⊕ P )
0 0 0 0 1 1 1 ¬(0⊕ PP2⊕A : B)
0 0 0 1 0 0 0 ¬(0⊕ 48‘FFFFFFFFFFFF ⊕ 0)
0 0 0 1 0 0 1 ¬(0⊕ 48‘FFFFFFFFFFFF ⊕ PP1)
0 0 0 1 0 1 0 ¬(0⊕ 48‘FFFFFFFFFFFF ⊕ P )
0 0 0 1 0 1 1 ¬(0⊕ 48‘FFFFFFFFFFFF ⊕A : B)
0 0 0 1 1 0 0 ¬(0⊕ C ⊕ 0)
0 0 0 1 1 0 1 ¬(0⊕ C ⊕ PP1)
0 0 0 1 1 1 0 ¬(0⊕ C ⊕ P )
0 0 0 1 1 1 1 ¬(0⊕ C ⊕A : B)
0 0 1 0 0 0 0 ¬(PCIN ⊕ 0⊕ 0)
0 0 1 0 0 0 1 ¬(PCIN ⊕ 0⊕ PP1)
0 0 1 0 0 1 0 ¬(PCIN ⊕ 0⊕ P )
0 0 1 0 0 1 1 ¬(PCIN ⊕ 0⊕A : B)
0 0 1 0 1 0 0 ¬(PCIN ⊕ PP2⊕ 0)
0 0 1 0 1 0 1 ¬(PCIN ⊕ PP2⊕ PP1)
0 0 1 0 1 1 0 ¬(PCIN ⊕ PP2⊕ P )
0 0 1 0 1 1 1 ¬(PCIN ⊕ PP2⊕A : B)
0 0 1 1 0 0 0 ¬(PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ 0)
0 0 1 1 0 0 1 ¬(PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ PP1)
0 0 1 1 0 1 0 ¬(PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ P )
0 0 1 1 0 1 1 ¬(PCIN ⊕ 48‘FFFFFFFFFFFF ⊕A : B)
0 0 1 1 1 0 0 ¬(PCIN ⊕ C ⊕ 0)
0 0 1 1 1 0 1 ¬(PCIN ⊕ C ⊕ PP1)
0 0 1 1 1 1 0 ¬(PCIN ⊕ C ⊕ P )
0 0 1 1 1 1 1 ¬(PCIN ⊕ C ⊕A : B)
0 1 0 0 0 0 0 ¬(P ⊕ 0⊕ 0)
0 1 0 0 0 0 1 ¬(P ⊕ 0⊕ PP1)
0 1 0 0 0 1 0 ¬(P ⊕ 0⊕ P )
0 1 0 0 0 1 1 ¬(P ⊕ 0⊕A : B)
0 1 0 0 1 0 0 ¬(P ⊕ PP2⊕ 0)
0 1 0 0 1 0 1 ¬(P ⊕ PP2⊕ PP1)
0 1 0 0 1 1 0 ¬(P ⊕ PP2⊕ P )
0 1 0 0 1 1 1 ¬(P ⊕ PP2⊕A : B)
0 1 0 1 0 0 0 ¬(P ⊕ 48‘FFFFFFFFFFFF ⊕ 0)
0 1 0 1 0 0 1 ¬(P ⊕ 48‘FFFFFFFFFFFF ⊕ PP1)
0 1 0 1 0 1 0 ¬(P ⊕ 48‘FFFFFFFFFFFF ⊕ P )
0 1 0 1 0 1 1 ¬(P ⊕ 48‘FFFFFFFFFFFF ⊕A : B)
0 1 0 1 1 0 0 ¬(P ⊕ C ⊕ 0)
0 1 0 1 1 0 1 ¬(P ⊕ C ⊕ PP1)
0 1 0 1 1 1 0 ¬(P ⊕ C ⊕ P )
0 1 0 1 1 1 1 ¬(P ⊕ C ⊕A : B)
0 1 1 0 0 0 0 ¬(C ⊕ 0⊕ 0)
0 1 1 0 0 0 1 ¬(C ⊕ 0⊕ PP1)
0 1 1 0 0 1 0 ¬(C ⊕ 0⊕ P )
0 1 1 0 0 1 1 ¬(C ⊕ 0⊕A : B)
0 1 1 0 1 0 0 ¬(C ⊕ PP2⊕ 0)
0 1 1 0 1 0 1 ¬(C ⊕ PP2⊕ PP1)
0 1 1 0 1 1 0 ¬(C ⊕ PP2⊕ P )
0 1 1 0 1 1 1 ¬(C ⊕ PP2⊕A : B)
0 1 1 1 0 0 0 ¬(C ⊕ 48‘FFFFFFFFFFFF ⊕ 0)
0 1 1 1 0 0 1 ¬(C ⊕ 48‘FFFFFFFFFFFF ⊕ PP1)
0 1 1 1 0 1 0 ¬(C ⊕ 48‘FFFFFFFFFFFF ⊕ P )
0 1 1 1 0 1 1 ¬(C ⊕ 48‘FFFFFFFFFFFF ⊕A : B)
0 1 1 1 1 0 0 ¬(C ⊕ C ⊕ 0)
0 1 1 1 1 0 1 ¬(C ⊕ C ⊕ PP1)
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Table 8.10: ALUMODE 0110 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
0 1 1 1 1 1 0 ¬(C ⊕ C ⊕ P )
0 1 1 1 1 1 1 ¬(C ⊕ C ⊕A : B)
1 0 0 0 0 0 0 ¬(P ⊕ 0⊕ 0)
1 0 0 0 0 0 1 ¬(P ⊕ 0⊕ PP1)
1 0 0 0 0 1 0 ¬(P ⊕ 0⊕ P )
1 0 0 0 0 1 1 ¬(P ⊕ 0⊕A : B)
1 0 0 0 1 0 0 ¬(P ⊕ PP2⊕ 0)
1 0 0 0 1 0 1 ¬(P ⊕ PP2⊕ PP1)
1 0 0 0 1 1 0 ¬(P ⊕ PP2⊕ P )
1 0 0 0 1 1 1 ¬(P ⊕ PP2⊕A : B)
1 0 0 1 0 0 0 ¬(P ⊕ 48‘FFFFFFFFFFFF ⊕ 0)
1 0 0 1 0 0 1 ¬(P ⊕ 48‘FFFFFFFFFFFF ⊕ PP1)
1 0 0 1 0 1 0 ¬(P ⊕ 48‘FFFFFFFFFFFF ⊕ P )
1 0 0 1 0 1 1 ¬(P ⊕ 48‘FFFFFFFFFFFF ⊕A : B)
1 0 0 1 1 0 0 ¬(P ⊕ C ⊕ 0)
1 0 0 1 1 0 1 ¬(P ⊕ C ⊕ PP1)
1 0 0 1 1 1 0 ¬(P ⊕ C ⊕ P )
1 0 0 1 1 1 1 ¬(P ⊕ C ⊕A : B)
1 0 1 0 0 0 0 ¬(RS PCIN ⊕ 0⊕ 0)
1 0 1 0 0 0 1 ¬(RS PCIN ⊕ 0⊕ PP1)
1 0 1 0 0 1 0 ¬(RS PCIN ⊕ 0⊕ P )
1 0 1 0 0 1 1 ¬(RS PCIN ⊕ 0⊕A : B)
1 0 1 0 1 0 0 ¬(RS PCIN ⊕ PP2⊕ 0)
1 0 1 0 1 0 1 ¬(RS PCIN ⊕ PP2⊕ PP1)
1 0 1 0 1 1 0 ¬(RS PCIN ⊕ PP2⊕ P )
1 0 1 0 1 1 1 ¬(RS PCIN ⊕ PP2⊕A : B)
1 0 1 1 0 0 0 ¬(RS PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ 0)
1 0 1 1 0 0 1 ¬(RS PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ PP1)
1 0 1 1 0 1 0 ¬(RS PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ P )
1 0 1 1 0 1 1 ¬(RS PCIN ⊕ 48‘FFFFFFFFFFFF ⊕A : B)
1 0 1 1 1 0 0 ¬(RS PCIN ⊕ C ⊕ 0)
1 0 1 1 1 0 1 ¬(RS PCIN ⊕ C ⊕ PP1)
1 0 1 1 1 1 0 ¬(RS PCIN ⊕ C ⊕ P )
1 0 1 1 1 1 1 ¬(RS PCIN ⊕ C ⊕A : B)
1 1 0 0 0 0 0 ¬(RS P ⊕ 0⊕ 0)
1 1 0 0 0 0 1 ¬(RS P ⊕ 0⊕ PP1)
1 1 0 0 0 1 0 ¬(RS P ⊕ 0⊕ P )
1 1 0 0 0 1 1 ¬(RS P ⊕ 0⊕A : B)
1 1 0 0 1 0 0 ¬(RS P ⊕ PP2⊕ 0)
1 1 0 0 1 0 1 ¬(RS P ⊕ PP2⊕ PP1)
1 1 0 0 1 1 0 ¬(RS P ⊕ PP2⊕ P )
1 1 0 0 1 1 1 ¬(RS P ⊕ PP2⊕A : B)
1 1 0 1 0 0 0 ¬(RS P ⊕ 48‘FFFFFFFFFFFF ⊕ 0)
1 1 0 1 0 0 1 ¬(RS P ⊕ 48‘FFFFFFFFFFFF ⊕ PP1)
1 1 0 1 0 1 0 ¬(RS P ⊕ 48‘FFFFFFFFFFFF ⊕ P )
1 1 0 1 0 1 1 ¬(RS P ⊕ 48‘FFFFFFFFFFFF ⊕A : B)
1 1 0 1 1 0 0 ¬(RS P ⊕ C ⊕ 0)
1 1 0 1 1 0 1 ¬(RS P ⊕ C ⊕ PP1)
1 1 0 1 1 1 0 ¬(RS P ⊕ C ⊕ P )
1 1 0 1 1 1 1 ¬(RS P ⊕ C ⊕A : B)
1 1 1 0 0 0 0 ¬(RS P ⊕ 0⊕ 0)
1 1 1 0 0 0 1 ¬(RS P ⊕ 0⊕ PP1)
1 1 1 0 0 1 0 ¬(RS P ⊕ 0⊕ P )
1 1 1 0 0 1 1 ¬(RS P ⊕ 0⊕A : B)
1 1 1 0 1 0 0 ¬(RS P ⊕ PP2⊕ 0)
1 1 1 0 1 0 1 ¬(RS P ⊕ PP2⊕ PP1)
1 1 1 0 1 1 0 ¬(RS P ⊕ PP2⊕ P )
1 1 1 0 1 1 1 ¬(RS P ⊕ PP2⊕A : B)
1 1 1 1 0 0 0 ¬(RS P ⊕ 48‘FFFFFFFFFFFF ⊕ 0)
1 1 1 1 0 0 1 ¬(RS P ⊕ 48‘FFFFFFFFFFFF ⊕ PP1)
1 1 1 1 0 1 0 ¬(RS P ⊕ 48‘FFFFFFFFFFFF ⊕ P )
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Table 8.10: ALUMODE 0110 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
1 1 1 1 0 1 1 ¬(RS P ⊕ 48‘FFFFFFFFFFFF ⊕A : B)
1 1 1 1 1 0 0 ¬(RS P ⊕ C ⊕ 0)
1 1 1 1 1 0 1 ¬(RS P ⊕ C ⊕ PP1)
1 1 1 1 1 1 0 ¬(RS P ⊕ C ⊕ P )
1 1 1 1 1 1 1 ¬(RS P ⊕ C ⊕A : B)

Table 8.11: ALUMODE 0111 Observed Results

OP Modes Observed OutputsZ Y X
0 0 0 0 0 0 0 ¬(¬0⊕ 0⊕ 0)
0 0 0 0 0 0 1 ¬(¬0⊕ 0⊕ PP1)
0 0 0 0 0 1 0 ¬(¬0⊕ 0⊕ P )
0 0 0 0 0 1 1 ¬(¬0⊕ 0⊕A : B)
0 0 0 0 1 0 0 ¬(¬0⊕ PP2⊕ 0)
0 0 0 0 1 0 1 ¬(¬0⊕ PP2⊕ PP1)
0 0 0 0 1 1 0 ¬(¬0⊕ PP2⊕ P )
0 0 0 0 1 1 1 ¬(¬0⊕ PP2⊕A : B)
0 0 0 1 0 0 0 ¬(¬0⊕ 48‘FFFFFFFFFFFF ⊕ 0)
0 0 0 1 0 0 1 ¬(¬0⊕ 48‘FFFFFFFFFFFF ⊕ PP1)
0 0 0 1 0 1 0 ¬(¬0⊕ 48‘FFFFFFFFFFFF ⊕ P )
0 0 0 1 0 1 1 ¬(¬0⊕ 48‘FFFFFFFFFFFF ⊕A : B)
0 0 0 1 1 0 0 ¬(¬0⊕ C ⊕ 0)
0 0 0 1 1 0 1 ¬(¬0⊕ C ⊕ PP1)
0 0 0 1 1 1 0 ¬(¬0⊕ C ⊕ P )
0 0 0 1 1 1 1 ¬(¬0⊕ C ⊕A : B)
0 0 1 0 0 0 0 ¬(¬PCIN ⊕ 0⊕ 0)
0 0 1 0 0 0 1 ¬(¬PCIN ⊕ 0⊕ PP1)
0 0 1 0 0 1 0 ¬(¬PCIN ⊕ 0⊕ P )
0 0 1 0 0 1 1 ¬(¬PCIN ⊕ 0⊕A : B)
0 0 1 0 1 0 0 ¬(¬PCIN ⊕ PP2⊕ 0)
0 0 1 0 1 0 1 ¬(¬PCIN ⊕ PP2⊕ PP1)
0 0 1 0 1 1 0 ¬(¬PCIN ⊕ PP2⊕ P )
0 0 1 0 1 1 1 ¬(¬PCIN ⊕ PP2⊕A : B)
0 0 1 1 0 0 0 ¬(¬PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ 0)
0 0 1 1 0 0 1 ¬(¬PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ PP1)
0 0 1 1 0 1 0 ¬(¬PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ P )
0 0 1 1 0 1 1 ¬(¬PCIN ⊕ 48‘FFFFFFFFFFFF ⊕A : B)
0 0 1 1 1 0 0 ¬(¬PCIN ⊕ C ⊕ 0)
0 0 1 1 1 0 1 ¬(¬PCIN ⊕ C ⊕ PP1)
0 0 1 1 1 1 0 ¬(¬PCIN ⊕ C ⊕ P )
0 0 1 1 1 1 1 ¬(¬PCIN ⊕ C ⊕A : B)
0 1 0 0 0 0 0 ¬(¬P ⊕ 0⊕ 0)
0 1 0 0 0 0 1 ¬(¬P ⊕ 0⊕ PP1)
0 1 0 0 0 1 0 ¬(¬P ⊕ 0⊕ P )
0 1 0 0 0 1 1 ¬(¬P ⊕ 0⊕A : B)
0 1 0 0 1 0 0 ¬(¬P ⊕ PP2⊕ 0)
0 1 0 0 1 0 1 ¬(¬P ⊕ PP2⊕ PP1)
0 1 0 0 1 1 0 ¬(¬P ⊕ PP2⊕ P )
0 1 0 0 1 1 1 ¬(¬P ⊕ PP2⊕A : B)
0 1 0 1 0 0 0 ¬(¬P ⊕ 48‘FFFFFFFFFFFF ⊕ 0)
0 1 0 1 0 0 1 ¬(¬P ⊕ 48‘FFFFFFFFFFFF ⊕ PP1)
0 1 0 1 0 1 0 ¬(¬P ⊕ 48‘FFFFFFFFFFFF ⊕ P )
0 1 0 1 0 1 1 ¬(¬P ⊕ 48‘FFFFFFFFFFFF ⊕A : B)
0 1 0 1 1 0 0 ¬(¬P ⊕ C ⊕ 0)
0 1 0 1 1 0 1 ¬(¬P ⊕ C ⊕ PP1)
0 1 0 1 1 1 0 ¬(¬P ⊕ C ⊕ P )
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Table 8.11: ALUMODE 0111 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
0 1 0 1 1 1 1 ¬(¬P ⊕ C ⊕A : B)
0 1 1 0 0 0 0 ¬(¬C ⊕ 0⊕ 0)
0 1 1 0 0 0 1 ¬(¬C ⊕ 0⊕ PP1)
0 1 1 0 0 1 0 ¬(¬C ⊕ 0⊕ P )
0 1 1 0 0 1 1 ¬(¬C ⊕ 0⊕A : B)
0 1 1 0 1 0 0 ¬(¬C ⊕ PP2⊕ 0)
0 1 1 0 1 0 1 ¬(¬C ⊕ PP2⊕ PP1)
0 1 1 0 1 1 0 ¬(¬C ⊕ PP2⊕ P )
0 1 1 0 1 1 1 ¬(¬C ⊕ PP2⊕A : B)
0 1 1 1 0 0 0 ¬(¬C ⊕ 48‘FFFFFFFFFFFF ⊕ 0)
0 1 1 1 0 0 1 ¬(¬C ⊕ 48‘FFFFFFFFFFFF ⊕ PP1)
0 1 1 1 0 1 0 ¬(¬C ⊕ 48‘FFFFFFFFFFFF ⊕ P )
0 1 1 1 0 1 1 ¬(¬C ⊕ 48‘FFFFFFFFFFFF ⊕A : B)
0 1 1 1 1 0 0 ¬(¬C ⊕ C ⊕ 0)
0 1 1 1 1 0 1 ¬(¬C ⊕ C ⊕ PP1)
0 1 1 1 1 1 0 ¬(¬C ⊕ C ⊕ P )
0 1 1 1 1 1 1 ¬(¬C ⊕ C ⊕A : B)
1 0 0 0 0 0 0 ¬(¬P ⊕ 0⊕ 0)
1 0 0 0 0 0 1 ¬(¬P ⊕ 0⊕ PP1)
1 0 0 0 0 1 0 ¬(¬P ⊕ 0⊕ P )
1 0 0 0 0 1 1 ¬(¬P ⊕ 0⊕A : B)
1 0 0 0 1 0 0 ¬(¬P ⊕ PP2⊕ 0)
1 0 0 0 1 0 1 ¬(¬P ⊕ PP2⊕ PP1)
1 0 0 0 1 1 0 ¬(¬P ⊕ PP2⊕ P )
1 0 0 0 1 1 1 ¬(¬P ⊕ PP2⊕A : B)
1 0 0 1 0 0 0 ¬(¬P ⊕ 48‘FFFFFFFFFFFF ⊕ 0)
1 0 0 1 0 0 1 ¬(¬P ⊕ 48‘FFFFFFFFFFFF ⊕ PP1)
1 0 0 1 0 1 0 ¬(¬P ⊕ 48‘FFFFFFFFFFFF ⊕ P )
1 0 0 1 0 1 1 ¬(¬P ⊕ 48‘FFFFFFFFFFFF ⊕A : B)
1 0 0 1 1 0 0 ¬(¬P ⊕ C ⊕ 0)
1 0 0 1 1 0 1 ¬(¬P ⊕ C ⊕ PP1)
1 0 0 1 1 1 0 ¬(¬P ⊕ C ⊕ P )
1 0 0 1 1 1 1 ¬(¬P ⊕ C ⊕A : B)
1 0 1 0 0 0 0 ¬(¬RS PCIN ⊕ 0⊕ 0)
1 0 1 0 0 0 1 ¬(¬RS PCIN ⊕ 0⊕ PP1)
1 0 1 0 0 1 0 ¬(¬RS PCIN ⊕ 0⊕ P )
1 0 1 0 0 1 1 ¬(¬RS PCIN ⊕ 0⊕A : B)
1 0 1 0 1 0 0 ¬(¬RS PCIN ⊕ PP2⊕ 0)
1 0 1 0 1 0 1 ¬(¬RS PCIN ⊕ PP2⊕ PP1)
1 0 1 0 1 1 0 ¬(¬RS PCIN ⊕ PP2⊕ P )
1 0 1 0 1 1 1 ¬(¬RS PCIN ⊕ PP2⊕A : B)
1 0 1 1 0 0 0 ¬(¬RS PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ 0)
1 0 1 1 0 0 1 ¬(¬RS PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ PP1)
1 0 1 1 0 1 0 ¬(¬RS PCIN ⊕ 48‘FFFFFFFFFFFF ⊕ P )
1 0 1 1 0 1 1 ¬(¬RS PCIN ⊕ 48‘FFFFFFFFFFFF ⊕A : B)
1 0 1 1 1 0 0 ¬(¬RS PCIN ⊕ C ⊕ 0)
1 0 1 1 1 0 1 ¬(¬RS PCIN ⊕ C ⊕ PP1)
1 0 1 1 1 1 0 ¬(¬RS PCIN ⊕ C ⊕ P )
1 0 1 1 1 1 1 ¬(¬RS PCIN ⊕ C ⊕A : B)
1 1 0 0 0 0 0 ¬(¬RS P ⊕ 0⊕ 0)
1 1 0 0 0 0 1 ¬(¬RS P ⊕ 0⊕ PP1)
1 1 0 0 0 1 0 ¬(¬RS P ⊕ 0⊕ P )
1 1 0 0 0 1 1 ¬(¬RS P ⊕ 0⊕A : B)
1 1 0 0 1 0 0 ¬(¬RS P ⊕ PP2⊕ 0)
1 1 0 0 1 0 1 ¬(¬RS P ⊕ PP2⊕ PP1)
1 1 0 0 1 1 0 ¬(¬RS P ⊕ PP2⊕ P )
1 1 0 0 1 1 1 ¬(¬RS P ⊕ PP2⊕A : B)
1 1 0 1 0 0 0 ¬(¬RS P ⊕ 48‘FFFFFFFFFFFF ⊕ 0)
1 1 0 1 0 0 1 ¬(¬RS P ⊕ 48‘FFFFFFFFFFFF ⊕ PP1)
1 1 0 1 0 1 0 ¬(¬RS P ⊕ 48‘FFFFFFFFFFFF ⊕ P )
1 1 0 1 0 1 1 ¬(¬RS P ⊕ 48‘FFFFFFFFFFFF ⊕A : B)
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Table 8.11: ALUMODE 0111 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
1 1 0 1 1 0 0 ¬(¬RS P ⊕ C ⊕ 0)
1 1 0 1 1 0 1 ¬(¬RS P ⊕ C ⊕ PP1)
1 1 0 1 1 1 0 ¬(¬RS P ⊕ C ⊕ P )
1 1 0 1 1 1 1 ¬(¬RS P ⊕ C ⊕A : B)
1 1 1 0 0 0 0 ¬(¬RS P ⊕ 0⊕ 0)
1 1 1 0 0 0 1 ¬(¬RS P ⊕ 0⊕ PP1)
1 1 1 0 0 1 0 ¬(¬RS P ⊕ 0⊕ P )
1 1 1 0 0 1 1 ¬(¬RS P ⊕ 0⊕A : B)
1 1 1 0 1 0 0 ¬(¬RS P ⊕ PP2⊕ 0)
1 1 1 0 1 0 1 ¬(¬RS P ⊕ PP2⊕ PP1)
1 1 1 0 1 1 0 ¬(¬RS P ⊕ PP2⊕ P )
1 1 1 0 1 1 1 ¬(¬RS P ⊕ PP2⊕A : B)
1 1 1 1 0 0 0 ¬(¬RS P ⊕ 48‘FFFFFFFFFFFF ⊕ 0)
1 1 1 1 0 0 1 ¬(¬RS P ⊕ 48‘FFFFFFFFFFFF ⊕ PP1)
1 1 1 1 0 1 0 ¬(¬RS P ⊕ 48‘FFFFFFFFFFFF ⊕ P )
1 1 1 1 0 1 1 ¬(¬RS P ⊕ 48‘FFFFFFFFFFFF ⊕A : B)
1 1 1 1 1 0 0 ¬(¬RS P ⊕ C ⊕ 0)
1 1 1 1 1 0 1 ¬(¬RS P ⊕ C ⊕ PP1)
1 1 1 1 1 1 0 ¬(¬RS P ⊕ C ⊕ P )
1 1 1 1 1 1 1 ¬(¬RS P ⊕ C ⊕A : B)

Table 8.12: ALUMODE 1000 Observed Results

OP Modes Observed OutputsZ Y X
0 0 0 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ 0 ∨ 0 ∧ 0)
0 0 0 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ 0 ∨ 0 ∧ 0)
0 0 0 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ 0 ∨ 0 ∧ 0)
0 0 0 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ 0 ∨ 0 ∧ 0)
0 0 0 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ 0 ∨ PP2 ∧ 0)
0 0 0 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ 0 ∨ PP2 ∧ 0)
0 0 0 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ 0 ∨ PP2 ∧ 0)
0 0 0 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ 0 ∨ PP2 ∧ 0)
0 0 0 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ 0 ∨ 48‘FFFFFFFFFFFF ∧ 0)
0 0 0 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ 0 ∨ 48‘FFFFFFFFFFFF ∧ 0)
0 0 0 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ 0 ∨ 48‘FFFFFFFFFFFF ∧ 0)
0 0 0 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ 0 ∨ 48‘FFFFFFFFFFFF ∧ 0)
0 0 0 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ 0 ∨ C ∧ 0)
0 0 0 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ 0 ∨ C ∧ 0)
0 0 0 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ 0 ∨ C ∧ 0)
0 0 0 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ 0 ∨ C ∧ 0)
0 0 1 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ PCIN ∨ 0 ∧ PCIN)
0 0 1 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ PCIN ∨ 0 ∧ PCIN)
0 0 1 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ PCIN ∨ 0 ∧ PCIN)
0 0 1 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ PCIN ∨ 0 ∧ PCIN)
0 0 1 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ PCIN ∨ PP2 ∧ PCIN)
0 0 1 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ PCIN ∨ PP2 ∧ PCIN)
0 0 1 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ PCIN ∨ PP2 ∧ PCIN)
0 0 1 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ PCIN ∨ PP2 ∧ PCIN)
0 0 1 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ PCIN ∨ 48‘FFFFFFFFFFFF ∧ PCIN)
0 0 1 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ PCIN ∨ 48‘FFFFFFFFFFFF ∧ PCIN)
0 0 1 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ PCIN ∨ 48‘FFFFFFFFFFFF ∧ PCIN)
0 0 1 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ PCIN ∨ 48‘FFFFFFFFFFFF ∧ PCIN)
0 0 1 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ PCIN ∨ C ∧ PCIN)
0 0 1 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ PCIN ∨ C ∧ PCIN)
0 0 1 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ PCIN ∨ C ∧ PCIN)
0 0 1 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ PCIN ∨ C ∧ PCIN)
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Table 8.12: ALUMODE 1000 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
0 1 0 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ P ∨ 0 ∧ P )
0 1 0 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ P ∨ 0 ∧ P )
0 1 0 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ P ∨ 0 ∧ P )
0 1 0 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ P ∨ 0 ∧ P )
0 1 0 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ P ∨ PP2 ∧ P )
0 1 0 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ P ∨ PP2 ∧ P )
0 1 0 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ P ∨ PP2 ∧ P )
0 1 0 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ P ∨ PP2 ∧ P )
0 1 0 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
0 1 0 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
0 1 0 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
0 1 0 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
0 1 0 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ P ∨ C ∧ P )
0 1 0 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ P ∨ C ∧ P )
0 1 0 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ P ∨ C ∧ P )
0 1 0 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ P ∨ C ∧ P )
0 1 1 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ C ∨ 0 ∧ C)
0 1 1 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ C ∨ 0 ∧ C)
0 1 1 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ C ∨ 0 ∧ C)
0 1 1 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ C ∨ 0 ∧ C)
0 1 1 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ C ∨ PP2 ∧ C)
0 1 1 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ C ∨ PP2 ∧ C)
0 1 1 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ C ∨ PP2 ∧ C)
0 1 1 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ C ∨ PP2 ∧ C)
0 1 1 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ C ∨ 48‘FFFFFFFFFFFF ∧ C)
0 1 1 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ C ∨ 48‘FFFFFFFFFFFF ∧ C)
0 1 1 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ C ∨ 48‘FFFFFFFFFFFF ∧ C)
0 1 1 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ C ∨ 48‘FFFFFFFFFFFF ∧ C)
0 1 1 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ C ∨ C ∧ C)
0 1 1 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ C ∨ C ∧ C)
0 1 1 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ C ∨ C ∧ C)
0 1 1 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ C ∨ C ∧ C)
1 0 0 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ P ∨ 0 ∧ P )
1 0 0 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ P ∨ 0 ∧ P )
1 0 0 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ P ∨ 0 ∧ P )
1 0 0 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ P ∨ 0 ∧ P )
1 0 0 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ P ∨ PP2 ∧ P )
1 0 0 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ P ∨ PP2 ∧ P )
1 0 0 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ P ∨ PP2 ∧ P )
1 0 0 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ P ∨ PP2 ∧ P )
1 0 0 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
1 0 0 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
1 0 0 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
1 0 0 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
1 0 0 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ P ∨ C ∧ P )
1 0 0 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ P ∨ C ∧ P )
1 0 0 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ P ∨ C ∧ P )
1 0 0 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ P ∨ C ∧ P )
1 0 1 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧RS PCIN ∨ 0 ∧RS PCIN)
1 0 1 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧RS PCIN ∨ 0 ∧RS PCIN)
1 0 1 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧RS PCIN ∨ 0 ∧RS PCIN)
1 0 1 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧RS PCIN ∨ 0 ∧RS PCIN)
1 0 1 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧RS PCIN ∨ PP2 ∧RS PCIN)
1 0 1 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧RS PCIN ∨ PP2 ∧RS PCIN)
1 0 1 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧RS PCIN ∨ PP2 ∧RS PCIN)
1 0 1 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧RS PCIN ∨ PP2 ∧RS PCIN)
1 0 1 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧RS PCIN ∨ 48‘FFFFFFFFFFFF ∧RS PCIN)
1 0 1 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧RS PCIN ∨ 48‘FFFFFFFFFFFF ∧RS PCIN)
1 0 1 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧RS PCIN ∨ 48‘FFFFFFFFFFFF ∧RS PCIN)
1 0 1 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧RS PCIN ∨ 48‘FFFFFFFFFFFF ∧RS PCIN)
1 0 1 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧RS PCIN ∨ C ∧RS PCIN)
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Table 8.12: ALUMODE 1000 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
1 0 1 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧RS PCIN ∨ C ∧RS PCIN)
1 0 1 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧RS PCIN ∨ C ∧RS PCIN)
1 0 1 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧RS PCIN ∨ C ∧RS PCIN)
1 1 0 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧RS P ∨ 0 ∧RS P )
1 1 0 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧RS P ∨ 0 ∧RS P )
1 1 0 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧RS P ∨ 0 ∧RS P )
1 1 0 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧RS P ∨ 0 ∧RS P )
1 1 0 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧RS P ∨ PP2 ∧RS P )
1 1 0 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧RS P ∨ PP2 ∧RS P )
1 1 0 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧RS P ∨ PP2 ∧RS P )
1 1 0 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧RS P ∨ PP2 ∧RS P )
1 1 0 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 0 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 0 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 0 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 0 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧RS P ∨ C ∧RS P )
1 1 0 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧RS P ∨ C ∧RS P )
1 1 0 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧RS P ∨ C ∧RS P )
1 1 0 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧RS P ∨ C ∧RS P )
1 1 1 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧RS P ∨ 0 ∧RS P )
1 1 1 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧RS P ∨ 0 ∧RS P )
1 1 1 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧RS P ∨ 0 ∧RS P )
1 1 1 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧RS P ∨ 0 ∧RS P )
1 1 1 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧RS P ∨ PP2 ∧RS P )
1 1 1 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧RS P ∨ PP2 ∧RS P )
1 1 1 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧RS P ∨ PP2 ∧RS P )
1 1 1 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧RS P ∨ PP2 ∧RS P )
1 1 1 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 1 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 1 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 1 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 1 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧RS P ∨ C ∧RS P )
1 1 1 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧RS P ∨ C ∧RS P )
1 1 1 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧RS P ∨ C ∧RS P )
1 1 1 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧RS P ∨ C ∧RS P )

Table 8.13: ALUMODE 1001 Expected Results

OP Modes Expected OutputsZ Y X
0 0 0 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ 0 ∨ 0 ∧ 0)
0 0 0 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ 0 ∨ 0 ∧ 0)
0 0 0 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ 0 ∨ 0 ∧ 0)
0 0 0 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ 0 ∨ 0 ∧ 0)
0 0 0 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ 0 ∨ PP2 ∧ 0)
0 0 0 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ 0 ∨ PP2 ∧ 0)
0 0 0 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ 0 ∨ PP2 ∧ 0)
0 0 0 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ 0 ∨ PP2 ∧ 0)
0 0 0 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ 0 ∨ 48‘FFFFFFFFFFFF ∧ 0)
0 0 0 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ 0 ∨ 48‘FFFFFFFFFFFF ∧ 0)
0 0 0 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ 0 ∨ 48‘FFFFFFFFFFFF ∧ 0)
0 0 0 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ 0 ∨ 48‘FFFFFFFFFFFF ∧ 0)
0 0 0 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ 0 ∨ C ∧ 0)
0 0 0 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ 0 ∨ C ∧ 0)
0 0 0 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ 0 ∨ C ∧ 0)
0 0 0 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ 0 ∨ C ∧ 0)
0 0 1 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ PCIN ∨ 0 ∧ PCIN)
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Table 8.13: ALUMODE 1001 Expected Results (cont.)

OP Modes Expected OutputsZ Y X
0 0 1 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ PCIN ∨ 0 ∧ PCIN)
0 0 1 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ PCIN ∨ 0 ∧ PCIN)
0 0 1 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ PCIN ∨ 0 ∧ PCIN)
0 0 1 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ PCIN ∨ PP2 ∧ PCIN)
0 0 1 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ PCIN ∨ PP2 ∧ PCIN)
0 0 1 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ PCIN ∨ PP2 ∧ PCIN)
0 0 1 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ PCIN ∨ PP2 ∧ PCIN)
0 0 1 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ PCIN ∨ 48‘FFFFFFFFFFFF ∧ PCIN)
0 0 1 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ PCIN ∨ 48‘FFFFFFFFFFFF ∧ PCIN)
0 0 1 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ PCIN ∨ 48‘FFFFFFFFFFFF ∧ PCIN)
0 0 1 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ PCIN ∨ 48‘FFFFFFFFFFFF ∧ PCIN)
0 0 1 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ PCIN ∨ C ∧ PCIN)
0 0 1 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ PCIN ∨ C ∧ PCIN)
0 0 1 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ PCIN ∨ C ∧ PCIN)
0 0 1 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ PCIN ∨ C ∧ PCIN)
0 1 0 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ P ∨ 0 ∧ P )
0 1 0 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ P ∨ 0 ∧ P )
0 1 0 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ P ∨ 0 ∧ P )
0 1 0 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ P ∨ 0 ∧ P )
0 1 0 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ P ∨ PP2 ∧ P )
0 1 0 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ P ∨ PP2 ∧ P )
0 1 0 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ P ∨ PP2 ∧ P )
0 1 0 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ P ∨ PP2 ∧ P )
0 1 0 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
0 1 0 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
0 1 0 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
0 1 0 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
0 1 0 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ P ∨ C ∧ P )
0 1 0 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ P ∨ C ∧ P )
0 1 0 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ P ∨ C ∧ P )
0 1 0 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ P ∨ C ∧ P )
0 1 1 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ C ∨ 0 ∧ C)
0 1 1 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ C ∨ 0 ∧ C)
0 1 1 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ C ∨ 0 ∧ C)
0 1 1 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ C ∨ 0 ∧ C)
0 1 1 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ C ∨ PP2 ∧ C)
0 1 1 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ C ∨ PP2 ∧ C)
0 1 1 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ C ∨ PP2 ∧ C)
0 1 1 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ C ∨ PP2 ∧ C)
0 1 1 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ C ∨ 48‘FFFFFFFFFFFF ∧ C)
0 1 1 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ C ∨ 48‘FFFFFFFFFFFF ∧ C)
0 1 1 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ C ∨ 48‘FFFFFFFFFFFF ∧ C)
0 1 1 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ C ∨ 48‘FFFFFFFFFFFF ∧ C)
0 1 1 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ C ∨ C ∧ C)
0 1 1 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ C ∨ C ∧ C)
0 1 1 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ C ∨ C ∧ C)
0 1 1 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ C ∨ C ∧ C)
1 0 0 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ P ∨ 0 ∧ P )
1 0 0 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ P ∨ 0 ∧ P )
1 0 0 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ P ∨ 0 ∧ P )
1 0 0 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ P ∨ 0 ∧ P )
1 0 0 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ P ∨ PP2 ∧ P )
1 0 0 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ P ∨ PP2 ∧ P )
1 0 0 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ P ∨ PP2 ∧ P )
1 0 0 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ P ∨ PP2 ∧ P )
1 0 0 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
1 0 0 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
1 0 0 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
1 0 0 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
1 0 0 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ P ∨ C ∧ P )
1 0 0 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ P ∨ C ∧ P )
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Table 8.13: ALUMODE 1001 Expected Results (cont.)

OP Modes Expected OutputsZ Y X
1 0 0 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ P ∨ C ∧ P )
1 0 0 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ P ∨ C ∧ P )
1 0 1 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧RS PCIN ∨ 0 ∧RS PCIN)
1 0 1 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧RS PCIN ∨ 0 ∧RS PCIN)
1 0 1 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧RS PCIN ∨ 0 ∧RS PCIN)
1 0 1 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧RS PCIN ∨ 0 ∧RS PCIN)
1 0 1 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧RS PCIN ∨ PP2 ∧RS PCIN)
1 0 1 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧RS PCIN ∨ PP2 ∧RS PCIN)
1 0 1 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧RS PCIN ∨ PP2 ∧RS PCIN)
1 0 1 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧RS PCIN ∨ PP2 ∧RS PCIN)
1 0 1 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧RS PCIN ∨ 48‘FFFFFFFFFFFF ∧RS PCIN)
1 0 1 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧RS PCIN ∨ 48‘FFFFFFFFFFFF ∧RS PCIN)
1 0 1 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧RS PCIN ∨ 48‘FFFFFFFFFFFF ∧RS PCIN)
1 0 1 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧RS PCIN ∨ 48‘FFFFFFFFFFFF ∧RS PCIN)
1 0 1 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧RS PCIN ∨ C ∧RS PCIN)
1 0 1 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧RS PCIN ∨ C ∧RS PCIN)
1 0 1 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧RS PCIN ∨ C ∧RS PCIN)
1 0 1 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧RS PCIN ∨ C ∧RS PCIN)
1 1 0 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧RS P ∨ 0 ∧RS P )
1 1 0 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧RS P ∨ 0 ∧RS P )
1 1 0 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧RS P ∨ 0 ∧RS P )
1 1 0 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧RS P ∨ 0 ∧RS P )
1 1 0 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧RS P ∨ PP2 ∧RS P )
1 1 0 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧RS P ∨ PP2 ∧RS P )
1 1 0 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧RS P ∨ PP2 ∧RS P )
1 1 0 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧RS P ∨ PP2 ∧RS P )
1 1 0 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 0 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 0 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 0 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 0 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧RS P ∨ C ∧RS P )
1 1 0 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧RS P ∨ C ∧RS P )
1 1 0 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧RS P ∨ C ∧RS P )
1 1 0 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧RS P ∨ C ∧RS P )
1 1 1 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧RS P ∨ 0 ∧RS P )
1 1 1 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧RS P ∨ 0 ∧RS P )
1 1 1 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧RS P ∨ 0 ∧RS P )
1 1 1 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧RS P ∨ 0 ∧RS P )
1 1 1 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧RS P ∨ PP2 ∧RS P )
1 1 1 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧RS P ∨ PP2 ∧RS P )
1 1 1 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧RS P ∨ PP2 ∧RS P )
1 1 1 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧RS P ∨ PP2 ∧RS P )
1 1 1 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 1 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 1 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 1 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 1 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧RS P ∨ C ∧RS P )
1 1 1 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧RS P ∨ C ∧RS P )
1 1 1 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧RS P ∨ C ∧RS P )
1 1 1 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧RS P ∨ C ∧RS P )

Table 8.14: ALUMODE 1010 Expected Results

OP Modes Expected OutputsZ Y X
0 0 0 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ ¬0 ∨ 0 ∧ ¬0)
0 0 0 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ ¬0 ∨ 0 ∧ ¬0)
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Table 8.14: ALUMODE 1010 Expected Results (cont.)

OP Modes Expected OutputsZ Y X
0 0 0 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ ¬0 ∨ 0 ∧ ¬0)
0 0 0 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ ¬0 ∨ 0 ∧ ¬0)
0 0 0 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ ¬0 ∨ PP2 ∧ ¬0)
0 0 0 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ ¬0 ∨ PP2 ∧ ¬0)
0 0 0 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ ¬0 ∨ PP2 ∧ ¬0)
0 0 0 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ ¬0 ∨ PP2 ∧ ¬0)
0 0 0 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬0 ∨ 48‘FFFFFFFFFFFF ∧ ¬0)
0 0 0 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬0 ∨ 48‘FFFFFFFFFFFF ∧ ¬0)
0 0 0 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬0 ∨ 48‘FFFFFFFFFFFF ∧ ¬0)
0 0 0 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬0 ∨ 48‘FFFFFFFFFFFF ∧ ¬0)
0 0 0 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ ¬0 ∨ C ∧ ¬0)
0 0 0 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ ¬0 ∨ C ∧ ¬0)
0 0 0 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ ¬0 ∨ C ∧ ¬0)
0 0 0 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ ¬0 ∨ C ∧ ¬0)
0 0 1 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ ¬PCIN ∨ 0 ∧ ¬PCIN)
0 0 1 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ ¬PCIN ∨ 0 ∧ ¬PCIN)
0 0 1 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ ¬PCIN ∨ 0 ∧ ¬PCIN)
0 0 1 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ ¬PCIN ∨ 0 ∧ ¬PCIN)
0 0 1 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ ¬PCIN ∨ PP2 ∧ ¬PCIN)
0 0 1 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ ¬PCIN ∨ PP2 ∧ ¬PCIN)
0 0 1 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ ¬PCIN ∨ PP2 ∧ ¬PCIN)
0 0 1 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ ¬PCIN ∨ PP2 ∧ ¬PCIN)
0 0 1 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬PCIN)
0 0 1 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬PCIN)
0 0 1 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬PCIN)
0 0 1 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬PCIN)
0 0 1 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ ¬PCIN ∨ C ∧ ¬PCIN)
0 0 1 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ ¬PCIN ∨ C ∧ ¬PCIN)
0 0 1 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ ¬PCIN ∨ C ∧ ¬PCIN)
0 0 1 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ ¬PCIN ∨ C ∧ ¬PCIN)
0 1 0 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ ¬P ∨ 0 ∧ ¬P )
0 1 0 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ ¬P ∨ 0 ∧ ¬P )
0 1 0 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ ¬P ∨ 0 ∧ ¬P )
0 1 0 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ ¬P ∨ 0 ∧ ¬P )
0 1 0 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ ¬P ∨ PP2 ∧ ¬P )
0 1 0 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ ¬P ∨ PP2 ∧ ¬P )
0 1 0 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ ¬P ∨ PP2 ∧ ¬P )
0 1 0 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ ¬P ∨ PP2 ∧ ¬P )
0 1 0 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
0 1 0 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
0 1 0 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
0 1 0 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
0 1 0 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ ¬P ∨ C ∧ ¬P )
0 1 0 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ ¬P ∨ C ∧ ¬P )
0 1 0 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ ¬P ∨ C ∧ ¬P )
0 1 0 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ ¬P ∨ C ∧ ¬P )
0 1 1 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ ¬C ∨ 0 ∧ ¬C)
0 1 1 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ ¬C ∨ 0 ∧ ¬C)
0 1 1 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ ¬C ∨ 0 ∧ ¬C)
0 1 1 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ ¬C ∨ 0 ∧ ¬C)
0 1 1 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ ¬C ∨ PP2 ∧ ¬C)
0 1 1 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ ¬C ∨ PP2 ∧ ¬C)
0 1 1 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ ¬C ∨ PP2 ∧ ¬C)
0 1 1 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ ¬C ∨ PP2 ∧ ¬C)
0 1 1 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬C ∨ 48‘FFFFFFFFFFFF ∧ ¬C)
0 1 1 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬C ∨ 48‘FFFFFFFFFFFF ∧ ¬C)
0 1 1 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬C ∨ 48‘FFFFFFFFFFFF ∧ ¬C)
0 1 1 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬C ∨ 48‘FFFFFFFFFFFF ∧ ¬C)
0 1 1 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ ¬C ∨ C ∧ ¬C)
0 1 1 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ ¬C ∨ C ∧ ¬C)
0 1 1 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ ¬C ∨ C ∧ ¬C)
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Table 8.14: ALUMODE 1010 Expected Results (cont.)

OP Modes Expected OutputsZ Y X
0 1 1 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ ¬C ∨ C ∧ ¬C)
1 0 0 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ ¬P ∨ 0 ∧ ¬P )
1 0 0 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ ¬P ∨ 0 ∧ ¬P )
1 0 0 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ ¬P ∨ 0 ∧ ¬P )
1 0 0 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ ¬P ∨ 0 ∧ ¬P )
1 0 0 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ ¬P ∨ PP2 ∧ ¬P )
1 0 0 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ ¬P ∨ PP2 ∧ ¬P )
1 0 0 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ ¬P ∨ PP2 ∧ ¬P )
1 0 0 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ ¬P ∨ PP2 ∧ ¬P )
1 0 0 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
1 0 0 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
1 0 0 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
1 0 0 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
1 0 0 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ ¬P ∨ C ∧ ¬P )
1 0 0 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ ¬P ∨ C ∧ ¬P )
1 0 0 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ ¬P ∨ C ∧ ¬P )
1 0 0 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ ¬P ∨ C ∧ ¬P )
1 0 1 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ ¬RS PCIN ∨ 0 ∧ ¬RS PCIN)
1 0 1 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ ¬RS PCIN ∨ 0 ∧ ¬RS PCIN)
1 0 1 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ ¬RS PCIN ∨ 0 ∧ ¬RS PCIN)
1 0 1 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ ¬RS PCIN ∨ 0 ∧ ¬RS PCIN)
1 0 1 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ ¬RS PCIN ∨ PP2 ∧ ¬RS PCIN)
1 0 1 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ ¬RS PCIN ∨ PP2 ∧ ¬RS PCIN)
1 0 1 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ ¬RS PCIN ∨ PP2 ∧ ¬RS PCIN)
1 0 1 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ ¬RS PCIN ∨ PP2 ∧ ¬RS PCIN)
1 0 1 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬RS PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬RS PCIN)
1 0 1 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬RS PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬RS PCIN)
1 0 1 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬RS PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬RS PCIN)
1 0 1 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬RS PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬RS PCIN)
1 0 1 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ ¬RS PCIN ∨ C ∧ ¬RS PCIN)
1 0 1 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ ¬RS PCIN ∨ C ∧ ¬RS PCIN)
1 0 1 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ ¬RS PCIN ∨ C ∧ ¬RS PCIN)
1 0 1 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ ¬RS PCIN ∨ C ∧ ¬RS PCIN)
1 1 0 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 0 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 0 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 0 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 0 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 0 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 0 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 0 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 0 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 0 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 0 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 0 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 0 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 0 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 0 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 0 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 1 0 0 0 0 3 ∗ (0 ∧ 0 ∨ 0 ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 1 0 0 0 1 3 ∗ (PP1 ∧ 0 ∨ PP1 ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 1 0 0 1 0 3 ∗ (P ∧ 0 ∨ P ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 1 0 0 1 1 3 ∗ (A : B ∧ 0 ∨A : B ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 1 0 1 0 0 3 ∗ (0 ∧ PP2 ∨ 0 ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 1 0 1 0 1 3 ∗ (PP1 ∧ PP2 ∨ PP1 ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 1 0 1 1 0 3 ∗ (P ∧ PP2 ∨ P ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 1 0 1 1 1 3 ∗ (A : B ∧ PP2 ∨A : B ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 1 1 0 0 0 3 ∗ (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 1 1 0 0 1 3 ∗ (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 1 1 0 1 0 3 ∗ (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 1 1 0 1 1 3 ∗ (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
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Table 8.14: ALUMODE 1010 Expected Results (cont.)

OP Modes Expected OutputsZ Y X
1 1 1 1 1 0 0 3 ∗ (0 ∧ C ∨ 0 ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 1 1 1 0 1 3 ∗ (PP1 ∧ C ∨ PP1 ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 1 1 1 1 0 3 ∗ (P ∧ C ∨ P ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 1 1 1 1 1 3 ∗ (A : B ∧ C ∨A : B ∧ ¬RS P ∨ C ∧ ¬RS P )

Table 8.15: ALUMODE 1011 Expected Results

OP Modes Expected OutputsZ Y X
0 0 0 0 0 0 0 3 ∗ ¬(0 ∧ 0 ∨ 0 ∧ ¬0 ∨ 0 ∧ ¬0)
0 0 0 0 0 0 1 3 ∗ ¬(PP1 ∧ 0 ∨ PP1 ∧ ¬0 ∨ 0 ∧ ¬0)
0 0 0 0 0 1 0 3 ∗ ¬(P ∧ 0 ∨ P ∧ ¬0 ∨ 0 ∧ ¬0)
0 0 0 0 0 1 1 3 ∗ ¬(A : B ∧ 0 ∨A : B ∧ ¬0 ∨ 0 ∧ ¬0)
0 0 0 0 1 0 0 3 ∗ ¬(0 ∧ PP2 ∨ 0 ∧ ¬0 ∨ PP2 ∧ ¬0)
0 0 0 0 1 0 1 3 ∗ ¬(PP1 ∧ PP2 ∨ PP1 ∧ ¬0 ∨ PP2 ∧ ¬0)
0 0 0 0 1 1 0 3 ∗ ¬(P ∧ PP2 ∨ P ∧ ¬0 ∨ PP2 ∧ ¬0)
0 0 0 0 1 1 1 3 ∗ ¬(A : B ∧ PP2 ∨A : B ∧ ¬0 ∨ PP2 ∧ ¬0)
0 0 0 1 0 0 0 3 ∗ ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬0 ∨ 48‘FFFFFFFFFFFF ∧ ¬0)
0 0 0 1 0 0 1 3 ∗ ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬0 ∨ 48‘FFFFFFFFFFFF ∧ ¬0)
0 0 0 1 0 1 0 3 ∗ ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬0 ∨ 48‘FFFFFFFFFFFF ∧ ¬0)
0 0 0 1 0 1 1 3 ∗ ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬0 ∨ 48‘FFFFFFFFFFFF ∧ ¬0)
0 0 0 1 1 0 0 3 ∗ ¬(0 ∧ C ∨ 0 ∧ ¬0 ∨ C ∧ ¬0)
0 0 0 1 1 0 1 3 ∗ ¬(PP1 ∧ C ∨ PP1 ∧ ¬0 ∨ C ∧ ¬0)
0 0 0 1 1 1 0 3 ∗ ¬(P ∧ C ∨ P ∧ ¬0 ∨ C ∧ ¬0)
0 0 0 1 1 1 1 3 ∗ ¬(A : B ∧ C ∨A : B ∧ ¬0 ∨ C ∧ ¬0)
0 0 1 0 0 0 0 3 ∗ ¬(0 ∧ 0 ∨ 0 ∧ ¬PCIN ∨ 0 ∧ ¬PCIN)
0 0 1 0 0 0 1 3 ∗ ¬(PP1 ∧ 0 ∨ PP1 ∧ ¬PCIN ∨ 0 ∧ ¬PCIN)
0 0 1 0 0 1 0 3 ∗ ¬(P ∧ 0 ∨ P ∧ ¬PCIN ∨ 0 ∧ ¬PCIN)
0 0 1 0 0 1 1 3 ∗ ¬(A : B ∧ 0 ∨A : B ∧ ¬PCIN ∨ 0 ∧ ¬PCIN)
0 0 1 0 1 0 0 3 ∗ ¬(0 ∧ PP2 ∨ 0 ∧ ¬PCIN ∨ PP2 ∧ ¬PCIN)
0 0 1 0 1 0 1 3 ∗ ¬(PP1 ∧ PP2 ∨ PP1 ∧ ¬PCIN ∨ PP2 ∧ ¬PCIN)
0 0 1 0 1 1 0 3 ∗ ¬(P ∧ PP2 ∨ P ∧ ¬PCIN ∨ PP2 ∧ ¬PCIN)
0 0 1 0 1 1 1 3 ∗ ¬(A : B ∧ PP2 ∨A : B ∧ ¬PCIN ∨ PP2 ∧ ¬PCIN)
0 0 1 1 0 0 0 3 ∗ ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬PCIN)
0 0 1 1 0 0 1 3 ∗ ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬PCIN)
0 0 1 1 0 1 0 3 ∗ ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬PCIN)
0 0 1 1 0 1 1 3 ∗ ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬PCIN)
0 0 1 1 1 0 0 3 ∗ ¬(0 ∧ C ∨ 0 ∧ ¬PCIN ∨ C ∧ ¬PCIN)
0 0 1 1 1 0 1 3 ∗ ¬(PP1 ∧ C ∨ PP1 ∧ ¬PCIN ∨ C ∧ ¬PCIN)
0 0 1 1 1 1 0 3 ∗ ¬(P ∧ C ∨ P ∧ ¬PCIN ∨ C ∧ ¬PCIN)
0 0 1 1 1 1 1 3 ∗ ¬(A : B ∧ C ∨A : B ∧ ¬PCIN ∨ C ∧ ¬PCIN)
0 1 0 0 0 0 0 3 ∗ ¬(0 ∧ 0 ∨ 0 ∧ ¬P ∨ 0 ∧ ¬P )
0 1 0 0 0 0 1 3 ∗ ¬(PP1 ∧ 0 ∨ PP1 ∧ ¬P ∨ 0 ∧ ¬P )
0 1 0 0 0 1 0 3 ∗ ¬(P ∧ 0 ∨ P ∧ ¬P ∨ 0 ∧ ¬P )
0 1 0 0 0 1 1 3 ∗ ¬(A : B ∧ 0 ∨A : B ∧ ¬P ∨ 0 ∧ ¬P )
0 1 0 0 1 0 0 3 ∗ ¬(0 ∧ PP2 ∨ 0 ∧ ¬P ∨ PP2 ∧ ¬P )
0 1 0 0 1 0 1 3 ∗ ¬(PP1 ∧ PP2 ∨ PP1 ∧ ¬P ∨ PP2 ∧ ¬P )
0 1 0 0 1 1 0 3 ∗ ¬(P ∧ PP2 ∨ P ∧ ¬P ∨ PP2 ∧ ¬P )
0 1 0 0 1 1 1 3 ∗ ¬(A : B ∧ PP2 ∨A : B ∧ ¬P ∨ PP2 ∧ ¬P )
0 1 0 1 0 0 0 3 ∗ ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
0 1 0 1 0 0 1 3 ∗ ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
0 1 0 1 0 1 0 3 ∗ ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
0 1 0 1 0 1 1 3 ∗ ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
0 1 0 1 1 0 0 3 ∗ ¬(0 ∧ C ∨ 0 ∧ ¬P ∨ C ∧ ¬P )
0 1 0 1 1 0 1 3 ∗ ¬(PP1 ∧ C ∨ PP1 ∧ ¬P ∨ C ∧ ¬P )
0 1 0 1 1 1 0 3 ∗ ¬(P ∧ C ∨ P ∧ ¬P ∨ C ∧ ¬P )
0 1 0 1 1 1 1 3 ∗ ¬(A : B ∧ C ∨A : B ∧ ¬P ∨ C ∧ ¬P )
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Table 8.15: ALUMODE 1011 Expected Results (cont.)

OP Modes Expected OutputsZ Y X
0 1 1 0 0 0 0 3 ∗ ¬(0 ∧ 0 ∨ 0 ∧ ¬C ∨ 0 ∧ ¬C)
0 1 1 0 0 0 1 3 ∗ ¬(PP1 ∧ 0 ∨ PP1 ∧ ¬C ∨ 0 ∧ ¬C)
0 1 1 0 0 1 0 3 ∗ ¬(P ∧ 0 ∨ P ∧ ¬C ∨ 0 ∧ ¬C)
0 1 1 0 0 1 1 3 ∗ ¬(A : B ∧ 0 ∨A : B ∧ ¬C ∨ 0 ∧ ¬C)
0 1 1 0 1 0 0 3 ∗ ¬(0 ∧ PP2 ∨ 0 ∧ ¬C ∨ PP2 ∧ ¬C)
0 1 1 0 1 0 1 3 ∗ ¬(PP1 ∧ PP2 ∨ PP1 ∧ ¬C ∨ PP2 ∧ ¬C)
0 1 1 0 1 1 0 3 ∗ ¬(P ∧ PP2 ∨ P ∧ ¬C ∨ PP2 ∧ ¬C)
0 1 1 0 1 1 1 3 ∗ ¬(A : B ∧ PP2 ∨A : B ∧ ¬C ∨ PP2 ∧ ¬C)
0 1 1 1 0 0 0 3 ∗ ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬C ∨ 48‘FFFFFFFFFFFF ∧ ¬C)
0 1 1 1 0 0 1 3 ∗ ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬C ∨ 48‘FFFFFFFFFFFF ∧ ¬C)
0 1 1 1 0 1 0 3 ∗ ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬C ∨ 48‘FFFFFFFFFFFF ∧ ¬C)
0 1 1 1 0 1 1 3 ∗ ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬C ∨ 48‘FFFFFFFFFFFF ∧ ¬C)
0 1 1 1 1 0 0 3 ∗ ¬(0 ∧ C ∨ 0 ∧ ¬C ∨ C ∧ ¬C)
0 1 1 1 1 0 1 3 ∗ ¬(PP1 ∧ C ∨ PP1 ∧ ¬C ∨ C ∧ ¬C)
0 1 1 1 1 1 0 3 ∗ ¬(P ∧ C ∨ P ∧ ¬C ∨ C ∧ ¬C)
0 1 1 1 1 1 1 3 ∗ ¬(A : B ∧ C ∨A : B ∧ ¬C ∨ C ∧ ¬C)
1 0 0 0 0 0 0 3 ∗ ¬(0 ∧ 0 ∨ 0 ∧ ¬P ∨ 0 ∧ ¬P )
1 0 0 0 0 0 1 3 ∗ ¬(PP1 ∧ 0 ∨ PP1 ∧ ¬P ∨ 0 ∧ ¬P )
1 0 0 0 0 1 0 3 ∗ ¬(P ∧ 0 ∨ P ∧ ¬P ∨ 0 ∧ ¬P )
1 0 0 0 0 1 1 3 ∗ ¬(A : B ∧ 0 ∨A : B ∧ ¬P ∨ 0 ∧ ¬P )
1 0 0 0 1 0 0 3 ∗ ¬(0 ∧ PP2 ∨ 0 ∧ ¬P ∨ PP2 ∧ ¬P )
1 0 0 0 1 0 1 3 ∗ ¬(PP1 ∧ PP2 ∨ PP1 ∧ ¬P ∨ PP2 ∧ ¬P )
1 0 0 0 1 1 0 3 ∗ ¬(P ∧ PP2 ∨ P ∧ ¬P ∨ PP2 ∧ ¬P )
1 0 0 0 1 1 1 3 ∗ ¬(A : B ∧ PP2 ∨A : B ∧ ¬P ∨ PP2 ∧ ¬P )
1 0 0 1 0 0 0 3 ∗ ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
1 0 0 1 0 0 1 3 ∗ ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
1 0 0 1 0 1 0 3 ∗ ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
1 0 0 1 0 1 1 3 ∗ ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
1 0 0 1 1 0 0 3 ∗ ¬(0 ∧ C ∨ 0 ∧ ¬P ∨ C ∧ ¬P )
1 0 0 1 1 0 1 3 ∗ ¬(PP1 ∧ C ∨ PP1 ∧ ¬P ∨ C ∧ ¬P )
1 0 0 1 1 1 0 3 ∗ ¬(P ∧ C ∨ P ∧ ¬P ∨ C ∧ ¬P )
1 0 0 1 1 1 1 3 ∗ ¬(A : B ∧ C ∨A : B ∧ ¬P ∨ C ∧ ¬P )
1 0 1 0 0 0 0 3 ∗ ¬(0 ∧ 0 ∨ 0 ∧ ¬RS PCIN ∨ 0 ∧ ¬RS PCIN)
1 0 1 0 0 0 1 3 ∗ ¬(PP1 ∧ 0 ∨ PP1 ∧ ¬RS PCIN ∨ 0 ∧ ¬RS PCIN)
1 0 1 0 0 1 0 3 ∗ ¬(P ∧ 0 ∨ P ∧ ¬RS PCIN ∨ 0 ∧ ¬RS PCIN)
1 0 1 0 0 1 1 3 ∗ ¬(A : B ∧ 0 ∨A : B ∧ ¬RS PCIN ∨ 0 ∧ ¬RS PCIN)
1 0 1 0 1 0 0 3 ∗ ¬(0 ∧ PP2 ∨ 0 ∧ ¬RS PCIN ∨ PP2 ∧ ¬RS PCIN)
1 0 1 0 1 0 1 3 ∗ ¬(PP1 ∧ PP2 ∨ PP1 ∧ ¬RS PCIN ∨ PP2 ∧ ¬RS PCIN)
1 0 1 0 1 1 0 3 ∗ ¬(P ∧ PP2 ∨ P ∧ ¬RS PCIN ∨ PP2 ∧ ¬RS PCIN)
1 0 1 0 1 1 1 3 ∗ ¬(A : B ∧ PP2 ∨A : B ∧ ¬RS PCIN ∨ PP2 ∧ ¬RS PCIN)
1 0 1 1 0 0 0 3 ∗ ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬RS PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬RS PCIN)
1 0 1 1 0 0 1 3 ∗ ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬RS PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬RS PCIN)
1 0 1 1 0 1 0 3 ∗ ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬RS PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬RS PCIN)
1 0 1 1 0 1 1 3 ∗ ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬RS PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬RS PCIN)
1 0 1 1 1 0 0 3 ∗ ¬(0 ∧ C ∨ 0 ∧ ¬RS PCIN ∨ C ∧ ¬RS PCIN)
1 0 1 1 1 0 1 3 ∗ ¬(PP1 ∧ C ∨ PP1 ∧ ¬RS PCIN ∨ C ∧ ¬RS PCIN)
1 0 1 1 1 1 0 3 ∗ ¬(P ∧ C ∨ P ∧ ¬RS PCIN ∨ C ∧ ¬RS PCIN)
1 0 1 1 1 1 1 3 ∗ ¬(A : B ∧ C ∨A : B ∧ ¬RS PCIN ∨ C ∧ ¬RS PCIN)
1 1 0 0 0 0 0 3 ∗ ¬(0 ∧ 0 ∨ 0 ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 0 0 0 0 1 3 ∗ ¬(PP1 ∧ 0 ∨ PP1 ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 0 0 0 1 0 3 ∗ ¬(P ∧ 0 ∨ P ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 0 0 0 1 1 3 ∗ ¬(A : B ∧ 0 ∨A : B ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 0 0 1 0 0 3 ∗ ¬(0 ∧ PP2 ∨ 0 ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 0 0 1 0 1 3 ∗ ¬(PP1 ∧ PP2 ∨ PP1 ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 0 0 1 1 0 3 ∗ ¬(P ∧ PP2 ∨ P ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 0 0 1 1 1 3 ∗ ¬(A : B ∧ PP2 ∨A : B ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 0 1 0 0 0 3 ∗ ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 0 1 0 0 1 3 ∗ ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 0 1 0 1 0 3 ∗ ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 0 1 0 1 1 3 ∗ ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 0 1 1 0 0 3 ∗ ¬(0 ∧ C ∨ 0 ∧ ¬RS P ∨ C ∧ ¬RS P )
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Table 8.15: ALUMODE 1011 Expected Results (cont.)

OP Modes Expected OutputsZ Y X
1 1 0 1 1 0 1 3 ∗ ¬(PP1 ∧ C ∨ PP1 ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 0 1 1 1 0 3 ∗ ¬(P ∧ C ∨ P ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 0 1 1 1 1 3 ∗ ¬(A : B ∧ C ∨A : B ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 1 0 0 0 0 3 ∗ ¬(0 ∧ 0 ∨ 0 ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 1 0 0 0 1 3 ∗ ¬(PP1 ∧ 0 ∨ PP1 ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 1 0 0 1 0 3 ∗ ¬(P ∧ 0 ∨ P ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 1 0 0 1 1 3 ∗ ¬(A : B ∧ 0 ∨A : B ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 1 0 1 0 0 3 ∗ ¬(0 ∧ PP2 ∨ 0 ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 1 0 1 0 1 3 ∗ ¬(PP1 ∧ PP2 ∨ PP1 ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 1 0 1 1 0 3 ∗ ¬(P ∧ PP2 ∨ P ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 1 0 1 1 1 3 ∗ ¬(A : B ∧ PP2 ∨A : B ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 1 1 0 0 0 3 ∗ ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 1 1 0 0 1 3 ∗ ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 1 1 0 1 0 3 ∗ ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 1 1 0 1 1 3 ∗ ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 1 1 1 0 0 3 ∗ ¬(0 ∧ C ∨ 0 ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 1 1 1 0 1 3 ∗ ¬(PP1 ∧ C ∨ PP1 ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 1 1 1 1 0 3 ∗ ¬(P ∧ C ∨ P ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 1 1 1 1 1 3 ∗ ¬(A : B ∧ C ∨A : B ∧ ¬RS P ∨ C ∧ ¬RS P )

Table 8.16: ALUMODE 1100 Observed Results

OP Modes Observed OutputsZ Y X
0 0 0 0 0 0 0 (0 ∧ 0 ∨ 0 ∧ 0 ∨ 0 ∧ 0)
0 0 0 0 0 0 1 (PP1 ∧ 0 ∨ PP1 ∧ 0 ∨ 0 ∧ 0)
0 0 0 0 0 1 0 (P ∧ 0 ∨ P ∧ 0 ∨ 0 ∧ 0)
0 0 0 0 0 1 1 (A : B ∧ 0 ∨A : B ∧ 0 ∨ 0 ∧ 0)
0 0 0 0 1 0 0 (0 ∧ PP2 ∨ 0 ∧ 0 ∨ PP2 ∧ 0)
0 0 0 0 1 0 1 (PP1 ∧ PP2 ∨ PP1 ∧ 0 ∨ PP2 ∧ 0)
0 0 0 0 1 1 0 (P ∧ PP2 ∨ P ∧ 0 ∨ PP2 ∧ 0)
0 0 0 0 1 1 1 (A : B ∧ PP2 ∨A : B ∧ 0 ∨ PP2 ∧ 0)
0 0 0 1 0 0 0 (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ 0 ∨ 48‘FFFFFFFFFFFF ∧ 0)
0 0 0 1 0 0 1 (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ 0 ∨ 48‘FFFFFFFFFFFF ∧ 0)
0 0 0 1 0 1 0 (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ 0 ∨ 48‘FFFFFFFFFFFF ∧ 0)
0 0 0 1 0 1 1 (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ 0 ∨ 48‘FFFFFFFFFFFF ∧ 0)
0 0 0 1 1 0 0 (0 ∧ C ∨ 0 ∧ 0 ∨ C ∧ 0)
0 0 0 1 1 0 1 (PP1 ∧ C ∨ PP1 ∧ 0 ∨ C ∧ 0)
0 0 0 1 1 1 0 (P ∧ C ∨ P ∧ 0 ∨ C ∧ 0)
0 0 0 1 1 1 1 (A : B ∧ C ∨A : B ∧ 0 ∨ C ∧ 0)
0 0 1 0 0 0 0 (0 ∧ 0 ∨ 0 ∧ PCIN ∨ 0 ∧ PCIN)
0 0 1 0 0 0 1 (PP1 ∧ 0 ∨ PP1 ∧ PCIN ∨ 0 ∧ PCIN)
0 0 1 0 0 1 0 (P ∧ 0 ∨ P ∧ PCIN ∨ 0 ∧ PCIN)
0 0 1 0 0 1 1 (A : B ∧ 0 ∨A : B ∧ PCIN ∨ 0 ∧ PCIN)
0 0 1 0 1 0 0 (0 ∧ PP2 ∨ 0 ∧ PCIN ∨ PP2 ∧ PCIN)
0 0 1 0 1 0 1 (PP1 ∧ PP2 ∨ PP1 ∧ PCIN ∨ PP2 ∧ PCIN)
0 0 1 0 1 1 0 (P ∧ PP2 ∨ P ∧ PCIN ∨ PP2 ∧ PCIN)
0 0 1 0 1 1 1 (A : B ∧ PP2 ∨A : B ∧ PCIN ∨ PP2 ∧ PCIN)
0 0 1 1 0 0 0 (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ PCIN ∨ 48‘FFFFFFFFFFFF ∧ PCIN)
0 0 1 1 0 0 1 (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ PCIN ∨ 48‘FFFFFFFFFFFF ∧ PCIN)
0 0 1 1 0 1 0 (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ PCIN ∨ 48‘FFFFFFFFFFFF ∧ PCIN)
0 0 1 1 0 1 1 (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ PCIN ∨ 48‘FFFFFFFFFFFF ∧ PCIN)
0 0 1 1 1 0 0 (0 ∧ C ∨ 0 ∧ PCIN ∨ C ∧ PCIN)
0 0 1 1 1 0 1 (PP1 ∧ C ∨ PP1 ∧ PCIN ∨ C ∧ PCIN)
0 0 1 1 1 1 0 (P ∧ C ∨ P ∧ PCIN ∨ C ∧ PCIN)
0 0 1 1 1 1 1 (A : B ∧ C ∨A : B ∧ PCIN ∨ C ∧ PCIN)
0 1 0 0 0 0 0 (0 ∧ 0 ∨ 0 ∧ P ∨ 0 ∧ P )
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Table 8.16: ALUMODE 1100 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
0 1 0 0 0 0 1 (PP1 ∧ 0 ∨ PP1 ∧ P ∨ 0 ∧ P )
0 1 0 0 0 1 0 (P ∧ 0 ∨ P ∧ P ∨ 0 ∧ P )
0 1 0 0 0 1 1 (A : B ∧ 0 ∨A : B ∧ P ∨ 0 ∧ P )
0 1 0 0 1 0 0 (0 ∧ PP2 ∨ 0 ∧ P ∨ PP2 ∧ P )
0 1 0 0 1 0 1 (PP1 ∧ PP2 ∨ PP1 ∧ P ∨ PP2 ∧ P )
0 1 0 0 1 1 0 (P ∧ PP2 ∨ P ∧ P ∨ PP2 ∧ P )
0 1 0 0 1 1 1 (A : B ∧ PP2 ∨A : B ∧ P ∨ PP2 ∧ P )
0 1 0 1 0 0 0 (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
0 1 0 1 0 0 1 (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
0 1 0 1 0 1 0 (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
0 1 0 1 0 1 1 (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
0 1 0 1 1 0 0 (0 ∧ C ∨ 0 ∧ P ∨ C ∧ P )
0 1 0 1 1 0 1 (PP1 ∧ C ∨ PP1 ∧ P ∨ C ∧ P )
0 1 0 1 1 1 0 (P ∧ C ∨ P ∧ P ∨ C ∧ P )
0 1 0 1 1 1 1 (A : B ∧ C ∨A : B ∧ P ∨ C ∧ P )
0 1 1 0 0 0 0 (0 ∧ 0 ∨ 0 ∧ C ∨ 0 ∧ C)
0 1 1 0 0 0 1 (PP1 ∧ 0 ∨ PP1 ∧ C ∨ 0 ∧ C)
0 1 1 0 0 1 0 (P ∧ 0 ∨ P ∧ C ∨ 0 ∧ C)
0 1 1 0 0 1 1 (A : B ∧ 0 ∨A : B ∧ C ∨ 0 ∧ C)
0 1 1 0 1 0 0 (0 ∧ PP2 ∨ 0 ∧ C ∨ PP2 ∧ C)
0 1 1 0 1 0 1 (PP1 ∧ PP2 ∨ PP1 ∧ C ∨ PP2 ∧ C)
0 1 1 0 1 1 0 (P ∧ PP2 ∨ P ∧ C ∨ PP2 ∧ C)
0 1 1 0 1 1 1 (A : B ∧ PP2 ∨A : B ∧ C ∨ PP2 ∧ C)
0 1 1 1 0 0 0 (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ C ∨ 48‘FFFFFFFFFFFF ∧ C)
0 1 1 1 0 0 1 (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ C ∨ 48‘FFFFFFFFFFFF ∧ C)
0 1 1 1 0 1 0 (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ C ∨ 48‘FFFFFFFFFFFF ∧ C)
0 1 1 1 0 1 1 (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ C ∨ 48‘FFFFFFFFFFFF ∧ C)
0 1 1 1 1 0 0 (0 ∧ C ∨ 0 ∧ C ∨ C ∧ C)
0 1 1 1 1 0 1 (PP1 ∧ C ∨ PP1 ∧ C ∨ C ∧ C)
0 1 1 1 1 1 0 (P ∧ C ∨ P ∧ C ∨ C ∧ C)
0 1 1 1 1 1 1 (A : B ∧ C ∨A : B ∧ C ∨ C ∧ C)
1 0 0 0 0 0 0 (0 ∧ 0 ∨ 0 ∧ P ∨ 0 ∧ P )
1 0 0 0 0 0 1 (PP1 ∧ 0 ∨ PP1 ∧ P ∨ 0 ∧ P )
1 0 0 0 0 1 0 (P ∧ 0 ∨ P ∧ P ∨ 0 ∧ P )
1 0 0 0 0 1 1 (A : B ∧ 0 ∨A : B ∧ P ∨ 0 ∧ P )
1 0 0 0 1 0 0 (0 ∧ PP2 ∨ 0 ∧ P ∨ PP2 ∧ P )
1 0 0 0 1 0 1 (PP1 ∧ PP2 ∨ PP1 ∧ P ∨ PP2 ∧ P )
1 0 0 0 1 1 0 (P ∧ PP2 ∨ P ∧ P ∨ PP2 ∧ P )
1 0 0 0 1 1 1 (A : B ∧ PP2 ∨A : B ∧ P ∨ PP2 ∧ P )
1 0 0 1 0 0 0 (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
1 0 0 1 0 0 1 (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
1 0 0 1 0 1 0 (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
1 0 0 1 0 1 1 (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
1 0 0 1 1 0 0 (0 ∧ C ∨ 0 ∧ P ∨ C ∧ P )
1 0 0 1 1 0 1 (PP1 ∧ C ∨ PP1 ∧ P ∨ C ∧ P )
1 0 0 1 1 1 0 (P ∧ C ∨ P ∧ P ∨ C ∧ P )
1 0 0 1 1 1 1 (A : B ∧ C ∨A : B ∧ P ∨ C ∧ P )
1 0 1 0 0 0 0 (0 ∧ 0 ∨ 0 ∧RS PCIN ∨ 0 ∧RS PCIN)
1 0 1 0 0 0 1 (PP1 ∧ 0 ∨ PP1 ∧RS PCIN ∨ 0 ∧RS PCIN)
1 0 1 0 0 1 0 (P ∧ 0 ∨ P ∧RS PCIN ∨ 0 ∧RS PCIN)
1 0 1 0 0 1 1 (A : B ∧ 0 ∨A : B ∧RS PCIN ∨ 0 ∧RS PCIN)
1 0 1 0 1 0 0 (0 ∧ PP2 ∨ 0 ∧RS PCIN ∨ PP2 ∧RS PCIN)
1 0 1 0 1 0 1 (PP1 ∧ PP2 ∨ PP1 ∧RS PCIN ∨ PP2 ∧RS PCIN)
1 0 1 0 1 1 0 (P ∧ PP2 ∨ P ∧RS PCIN ∨ PP2 ∧RS PCIN)
1 0 1 0 1 1 1 (A : B ∧ PP2 ∨A : B ∧RS PCIN ∨ PP2 ∧RS PCIN)
1 0 1 1 0 0 0 (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧RS PCIN ∨ 48‘FFFFFFFFFFFF ∧RS PCIN)
1 0 1 1 0 0 1 (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧RS PCIN ∨ 48‘FFFFFFFFFFFF ∧RS PCIN)
1 0 1 1 0 1 0 (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧RS PCIN ∨ 48‘FFFFFFFFFFFF ∧RS PCIN)
1 0 1 1 0 1 1 (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧RS PCIN ∨ 48‘FFFFFFFFFFFF ∧RS PCIN)
1 0 1 1 1 0 0 (0 ∧ C ∨ 0 ∧RS PCIN ∨ C ∧RS PCIN)
1 0 1 1 1 0 1 (PP1 ∧ C ∨ PP1 ∧RS PCIN ∨ C ∧RS PCIN)
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Table 8.16: ALUMODE 1100 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
1 0 1 1 1 1 0 (P ∧ C ∨ P ∧RS PCIN ∨ C ∧RS PCIN)
1 0 1 1 1 1 1 (A : B ∧ C ∨A : B ∧RS PCIN ∨ C ∧RS PCIN)
1 1 0 0 0 0 0 (0 ∧ 0 ∨ 0 ∧RS P ∨ 0 ∧RS P )
1 1 0 0 0 0 1 (PP1 ∧ 0 ∨ PP1 ∧RS P ∨ 0 ∧RS P )
1 1 0 0 0 1 0 (P ∧ 0 ∨ P ∧RS P ∨ 0 ∧RS P )
1 1 0 0 0 1 1 (A : B ∧ 0 ∨A : B ∧RS P ∨ 0 ∧RS P )
1 1 0 0 1 0 0 (0 ∧ PP2 ∨ 0 ∧RS P ∨ PP2 ∧RS P )
1 1 0 0 1 0 1 (PP1 ∧ PP2 ∨ PP1 ∧RS P ∨ PP2 ∧RS P )
1 1 0 0 1 1 0 (P ∧ PP2 ∨ P ∧RS P ∨ PP2 ∧RS P )
1 1 0 0 1 1 1 (A : B ∧ PP2 ∨A : B ∧RS P ∨ PP2 ∧RS P )
1 1 0 1 0 0 0 (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 0 1 0 0 1 (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 0 1 0 1 0 (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 0 1 0 1 1 (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 0 1 1 0 0 (0 ∧ C ∨ 0 ∧RS P ∨ C ∧RS P )
1 1 0 1 1 0 1 (PP1 ∧ C ∨ PP1 ∧RS P ∨ C ∧RS P )
1 1 0 1 1 1 0 (P ∧ C ∨ P ∧RS P ∨ C ∧RS P )
1 1 0 1 1 1 1 (A : B ∧ C ∨A : B ∧RS P ∨ C ∧RS P )
1 1 1 0 0 0 0 (0 ∧ 0 ∨ 0 ∧RS P ∨ 0 ∧RS P )
1 1 1 0 0 0 1 (PP1 ∧ 0 ∨ PP1 ∧RS P ∨ 0 ∧RS P )
1 1 1 0 0 1 0 (P ∧ 0 ∨ P ∧RS P ∨ 0 ∧RS P )
1 1 1 0 0 1 1 (A : B ∧ 0 ∨A : B ∧RS P ∨ 0 ∧RS P )
1 1 1 0 1 0 0 (0 ∧ PP2 ∨ 0 ∧RS P ∨ PP2 ∧RS P )
1 1 1 0 1 0 1 (PP1 ∧ PP2 ∨ PP1 ∧RS P ∨ PP2 ∧RS P )
1 1 1 0 1 1 0 (P ∧ PP2 ∨ P ∧RS P ∨ PP2 ∧RS P )
1 1 1 0 1 1 1 (A : B ∧ PP2 ∨A : B ∧RS P ∨ PP2 ∧RS P )
1 1 1 1 0 0 0 (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 1 1 0 0 1 (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 1 1 0 1 0 (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 1 1 0 1 1 (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 1 1 1 0 0 (0 ∧ C ∨ 0 ∧RS P ∨ C ∧RS P )
1 1 1 1 1 0 1 (PP1 ∧ C ∨ PP1 ∧RS P ∨ C ∧RS P )
1 1 1 1 1 1 0 (P ∧ C ∨ P ∧RS P ∨ C ∧RS P )
1 1 1 1 1 1 1 (A : B ∧ C ∨A : B ∧RS P ∨ C ∧RS P )

Table 8.17: ALUMODE 1101 Observed Results

OP Modes Observed OutputsZ Y X
0 0 0 0 0 0 0 (0 ∧ 0 ∨ 0 ∧ ¬0 ∨ 0 ∧ ¬0)
0 0 0 0 0 0 1 (PP1 ∧ 0 ∨ PP1 ∧ ¬0 ∨ 0 ∧ ¬0)
0 0 0 0 0 1 0 (P ∧ 0 ∨ P ∧ ¬0 ∨ 0 ∧ ¬0)
0 0 0 0 0 1 1 (A : B ∧ 0 ∨A : B ∧ ¬0 ∨ 0 ∧ ¬0)
0 0 0 0 1 0 0 (0 ∧ PP2 ∨ 0 ∧ ¬0 ∨ PP2 ∧ ¬0)
0 0 0 0 1 0 1 (PP1 ∧ PP2 ∨ PP1 ∧ ¬0 ∨ PP2 ∧ ¬0)
0 0 0 0 1 1 0 (P ∧ PP2 ∨ P ∧ ¬0 ∨ PP2 ∧ ¬0)
0 0 0 0 1 1 1 (A : B ∧ PP2 ∨A : B ∧ ¬0 ∨ PP2 ∧ ¬0)
0 0 0 1 0 0 0 (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬0 ∨ 48‘FFFFFFFFFFFF ∧ ¬0)
0 0 0 1 0 0 1 (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬0 ∨ 48‘FFFFFFFFFFFF ∧ ¬0)
0 0 0 1 0 1 0 (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬0 ∨ 48‘FFFFFFFFFFFF ∧ ¬0)
0 0 0 1 0 1 1 (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬0 ∨ 48‘FFFFFFFFFFFF ∧ ¬0)
0 0 0 1 1 0 0 (0 ∧ C ∨ 0 ∧ ¬0 ∨ C ∧ ¬0)
0 0 0 1 1 0 1 (PP1 ∧ C ∨ PP1 ∧ ¬0 ∨ C ∧ ¬0)
0 0 0 1 1 1 0 (P ∧ C ∨ P ∧ ¬0 ∨ C ∧ ¬0)
0 0 0 1 1 1 1 (A : B ∧ C ∨A : B ∧ ¬0 ∨ C ∧ ¬0)
0 0 1 0 0 0 0 (0 ∧ 0 ∨ 0 ∧ ¬PCIN ∨ 0 ∧ ¬PCIN)
0 0 1 0 0 0 1 (PP1 ∧ 0 ∨ PP1 ∧ ¬PCIN ∨ 0 ∧ ¬PCIN)
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Table 8.17: ALUMODE 1101 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
0 0 1 0 0 1 0 (P ∧ 0 ∨ P ∧ ¬PCIN ∨ 0 ∧ ¬PCIN)
0 0 1 0 0 1 1 (A : B ∧ 0 ∨A : B ∧ ¬PCIN ∨ 0 ∧ ¬PCIN)
0 0 1 0 1 0 0 (0 ∧ PP2 ∨ 0 ∧ ¬PCIN ∨ PP2 ∧ ¬PCIN)
0 0 1 0 1 0 1 (PP1 ∧ PP2 ∨ PP1 ∧ ¬PCIN ∨ PP2 ∧ ¬PCIN)
0 0 1 0 1 1 0 (P ∧ PP2 ∨ P ∧ ¬PCIN ∨ PP2 ∧ ¬PCIN)
0 0 1 0 1 1 1 (A : B ∧ PP2 ∨A : B ∧ ¬PCIN ∨ PP2 ∧ ¬PCIN)
0 0 1 1 0 0 0 (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬PCIN)
0 0 1 1 0 0 1 (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬PCIN)
0 0 1 1 0 1 0 (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬PCIN)
0 0 1 1 0 1 1 (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬PCIN)
0 0 1 1 1 0 0 (0 ∧ C ∨ 0 ∧ ¬PCIN ∨ C ∧ ¬PCIN)
0 0 1 1 1 0 1 (PP1 ∧ C ∨ PP1 ∧ ¬PCIN ∨ C ∧ ¬PCIN)
0 0 1 1 1 1 0 (P ∧ C ∨ P ∧ ¬PCIN ∨ C ∧ ¬PCIN)
0 0 1 1 1 1 1 (A : B ∧ C ∨A : B ∧ ¬PCIN ∨ C ∧ ¬PCIN)
0 1 0 0 0 0 0 (0 ∧ 0 ∨ 0 ∧ ¬P ∨ 0 ∧ ¬P )
0 1 0 0 0 0 1 (PP1 ∧ 0 ∨ PP1 ∧ ¬P ∨ 0 ∧ ¬P )
0 1 0 0 0 1 0 (P ∧ 0 ∨ P ∧ ¬P ∨ 0 ∧ ¬P )
0 1 0 0 0 1 1 (A : B ∧ 0 ∨A : B ∧ ¬P ∨ 0 ∧ ¬P )
0 1 0 0 1 0 0 (0 ∧ PP2 ∨ 0 ∧ ¬P ∨ PP2 ∧ ¬P )
0 1 0 0 1 0 1 (PP1 ∧ PP2 ∨ PP1 ∧ ¬P ∨ PP2 ∧ ¬P )
0 1 0 0 1 1 0 (P ∧ PP2 ∨ P ∧ ¬P ∨ PP2 ∧ ¬P )
0 1 0 0 1 1 1 (A : B ∧ PP2 ∨A : B ∧ ¬P ∨ PP2 ∧ ¬P )
0 1 0 1 0 0 0 (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
0 1 0 1 0 0 1 (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
0 1 0 1 0 1 0 (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
0 1 0 1 0 1 1 (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
0 1 0 1 1 0 0 (0 ∧ C ∨ 0 ∧ ¬P ∨ C ∧ ¬P )
0 1 0 1 1 0 1 (PP1 ∧ C ∨ PP1 ∧ ¬P ∨ C ∧ ¬P )
0 1 0 1 1 1 0 (P ∧ C ∨ P ∧ ¬P ∨ C ∧ ¬P )
0 1 0 1 1 1 1 (A : B ∧ C ∨A : B ∧ ¬P ∨ C ∧ ¬P )
0 1 1 0 0 0 0 (0 ∧ 0 ∨ 0 ∧ ¬C ∨ 0 ∧ ¬C)
0 1 1 0 0 0 1 (PP1 ∧ 0 ∨ PP1 ∧ ¬C ∨ 0 ∧ ¬C)
0 1 1 0 0 1 0 (P ∧ 0 ∨ P ∧ ¬C ∨ 0 ∧ ¬C)
0 1 1 0 0 1 1 (A : B ∧ 0 ∨A : B ∧ ¬C ∨ 0 ∧ ¬C)
0 1 1 0 1 0 0 (0 ∧ PP2 ∨ 0 ∧ ¬C ∨ PP2 ∧ ¬C)
0 1 1 0 1 0 1 (PP1 ∧ PP2 ∨ PP1 ∧ ¬C ∨ PP2 ∧ ¬C)
0 1 1 0 1 1 0 (P ∧ PP2 ∨ P ∧ ¬C ∨ PP2 ∧ ¬C)
0 1 1 0 1 1 1 (A : B ∧ PP2 ∨A : B ∧ ¬C ∨ PP2 ∧ ¬C)
0 1 1 1 0 0 0 (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬C ∨ 48‘FFFFFFFFFFFF ∧ ¬C)
0 1 1 1 0 0 1 (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬C ∨ 48‘FFFFFFFFFFFF ∧ ¬C)
0 1 1 1 0 1 0 (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬C ∨ 48‘FFFFFFFFFFFF ∧ ¬C)
0 1 1 1 0 1 1 (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬C ∨ 48‘FFFFFFFFFFFF ∧ ¬C)
0 1 1 1 1 0 0 (0 ∧ C ∨ 0 ∧ ¬C ∨ C ∧ ¬C)
0 1 1 1 1 0 1 (PP1 ∧ C ∨ PP1 ∧ ¬C ∨ C ∧ ¬C)
0 1 1 1 1 1 0 (P ∧ C ∨ P ∧ ¬C ∨ C ∧ ¬C)
0 1 1 1 1 1 1 (A : B ∧ C ∨A : B ∧ ¬C ∨ C ∧ ¬C)
1 0 0 0 0 0 0 (0 ∧ 0 ∨ 0 ∧ ¬P ∨ 0 ∧ ¬P )
1 0 0 0 0 0 1 (PP1 ∧ 0 ∨ PP1 ∧ ¬P ∨ 0 ∧ ¬P )
1 0 0 0 0 1 0 (P ∧ 0 ∨ P ∧ ¬P ∨ 0 ∧ ¬P )
1 0 0 0 0 1 1 (A : B ∧ 0 ∨A : B ∧ ¬P ∨ 0 ∧ ¬P )
1 0 0 0 1 0 0 (0 ∧ PP2 ∨ 0 ∧ ¬P ∨ PP2 ∧ ¬P )
1 0 0 0 1 0 1 (PP1 ∧ PP2 ∨ PP1 ∧ ¬P ∨ PP2 ∧ ¬P )
1 0 0 0 1 1 0 (P ∧ PP2 ∨ P ∧ ¬P ∨ PP2 ∧ ¬P )
1 0 0 0 1 1 1 (A : B ∧ PP2 ∨A : B ∧ ¬P ∨ PP2 ∧ ¬P )
1 0 0 1 0 0 0 (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
1 0 0 1 0 0 1 (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
1 0 0 1 0 1 0 (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
1 0 0 1 0 1 1 (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
1 0 0 1 1 0 0 (0 ∧ C ∨ 0 ∧ ¬P ∨ C ∧ ¬P )
1 0 0 1 1 0 1 (PP1 ∧ C ∨ PP1 ∧ ¬P ∨ C ∧ ¬P )
1 0 0 1 1 1 0 (P ∧ C ∨ P ∧ ¬P ∨ C ∧ ¬P )
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Table 8.17: ALUMODE 1101 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
1 0 0 1 1 1 1 (A : B ∧ C ∨A : B ∧ ¬P ∨ C ∧ ¬P )
1 0 1 0 0 0 0 (0 ∧ 0 ∨ 0 ∧ ¬RS PCIN ∨ 0 ∧ ¬RS PCIN)
1 0 1 0 0 0 1 (PP1 ∧ 0 ∨ PP1 ∧ ¬RS PCIN ∨ 0 ∧ ¬RS PCIN)
1 0 1 0 0 1 0 (P ∧ 0 ∨ P ∧ ¬RS PCIN ∨ 0 ∧ ¬RS PCIN)
1 0 1 0 0 1 1 (A : B ∧ 0 ∨A : B ∧ ¬RS PCIN ∨ 0 ∧ ¬RS PCIN)
1 0 1 0 1 0 0 (0 ∧ PP2 ∨ 0 ∧ ¬RS PCIN ∨ PP2 ∧ ¬RS PCIN)
1 0 1 0 1 0 1 (PP1 ∧ PP2 ∨ PP1 ∧ ¬RS PCIN ∨ PP2 ∧ ¬RS PCIN)
1 0 1 0 1 1 0 (P ∧ PP2 ∨ P ∧ ¬RS PCIN ∨ PP2 ∧ ¬RS PCIN)
1 0 1 0 1 1 1 (A : B ∧ PP2 ∨A : B ∧ ¬RS PCIN ∨ PP2 ∧ ¬RS PCIN)
1 0 1 1 0 0 0 (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬RS PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬RS PCIN)
1 0 1 1 0 0 1 (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬RS PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬RS PCIN)
1 0 1 1 0 1 0 (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬RS PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬RS PCIN)
1 0 1 1 0 1 1 (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬RS PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬RS PCIN)
1 0 1 1 1 0 0 (0 ∧ C ∨ 0 ∧ ¬RS PCIN ∨ C ∧ ¬RS PCIN)
1 0 1 1 1 0 1 (PP1 ∧ C ∨ PP1 ∧ ¬RS PCIN ∨ C ∧ ¬RS PCIN)
1 0 1 1 1 1 0 (P ∧ C ∨ P ∧ ¬RS PCIN ∨ C ∧ ¬RS PCIN)
1 0 1 1 1 1 1 (A : B ∧ C ∨A : B ∧ ¬RS PCIN ∨ C ∧ ¬RS PCIN)
1 1 0 0 0 0 0 (0 ∧ 0 ∨ 0 ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 0 0 0 0 1 (PP1 ∧ 0 ∨ PP1 ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 0 0 0 1 0 (P ∧ 0 ∨ P ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 0 0 0 1 1 (A : B ∧ 0 ∨A : B ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 0 0 1 0 0 (0 ∧ PP2 ∨ 0 ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 0 0 1 0 1 (PP1 ∧ PP2 ∨ PP1 ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 0 0 1 1 0 (P ∧ PP2 ∨ P ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 0 0 1 1 1 (A : B ∧ PP2 ∨A : B ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 0 1 0 0 0 (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 0 1 0 0 1 (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 0 1 0 1 0 (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 0 1 0 1 1 (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 0 1 1 0 0 (0 ∧ C ∨ 0 ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 0 1 1 0 1 (PP1 ∧ C ∨ PP1 ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 0 1 1 1 0 (P ∧ C ∨ P ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 0 1 1 1 1 (A : B ∧ C ∨A : B ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 1 0 0 0 0 (0 ∧ 0 ∨ 0 ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 1 0 0 0 1 (PP1 ∧ 0 ∨ PP1 ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 1 0 0 1 0 (P ∧ 0 ∨ P ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 1 0 0 1 1 (A : B ∧ 0 ∨A : B ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 1 0 1 0 0 (0 ∧ PP2 ∨ 0 ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 1 0 1 0 1 (PP1 ∧ PP2 ∨ PP1 ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 1 0 1 1 0 (P ∧ PP2 ∨ P ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 1 0 1 1 1 (A : B ∧ PP2 ∨A : B ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 1 1 0 0 0 (0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 1 1 0 0 1 (PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 1 1 0 1 0 (P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 1 1 0 1 1 (A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 1 1 1 0 0 (0 ∧ C ∨ 0 ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 1 1 1 0 1 (PP1 ∧ C ∨ PP1 ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 1 1 1 1 0 (P ∧ C ∨ P ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 1 1 1 1 1 (A : B ∧ C ∨A : B ∧ ¬RS P ∨ C ∧ ¬RS P )

Table 8.18: ALUMODE 1110 Observed Results

OP Modes Observed OutputsZ Y X
0 0 0 0 0 0 0 ¬(0 ∧ 0 ∨ 0 ∧ 0 ∨ 0 ∧ 0)
0 0 0 0 0 0 1 ¬(PP1 ∧ 0 ∨ PP1 ∧ 0 ∨ 0 ∧ 0)
0 0 0 0 0 1 0 ¬(P ∧ 0 ∨ P ∧ 0 ∨ 0 ∧ 0)
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Table 8.18: ALUMODE 1110 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
0 0 0 0 0 1 1 ¬(A : B ∧ 0 ∨A : B ∧ 0 ∨ 0 ∧ 0)
0 0 0 0 1 0 0 ¬(0 ∧ PP2 ∨ 0 ∧ 0 ∨ PP2 ∧ 0)
0 0 0 0 1 0 1 ¬(PP1 ∧ PP2 ∨ PP1 ∧ 0 ∨ PP2 ∧ 0)
0 0 0 0 1 1 0 ¬(P ∧ PP2 ∨ P ∧ 0 ∨ PP2 ∧ 0)
0 0 0 0 1 1 1 ¬(A : B ∧ PP2 ∨A : B ∧ 0 ∨ PP2 ∧ 0)
0 0 0 1 0 0 0 ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ 0 ∨ 48‘FFFFFFFFFFFF ∧ 0)
0 0 0 1 0 0 1 ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ 0 ∨ 48‘FFFFFFFFFFFF ∧ 0)
0 0 0 1 0 1 0 ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ 0 ∨ 48‘FFFFFFFFFFFF ∧ 0)
0 0 0 1 0 1 1 ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ 0 ∨ 48‘FFFFFFFFFFFF ∧ 0)
0 0 0 1 1 0 0 ¬(0 ∧ C ∨ 0 ∧ 0 ∨ C ∧ 0)
0 0 0 1 1 0 1 ¬(PP1 ∧ C ∨ PP1 ∧ 0 ∨ C ∧ 0)
0 0 0 1 1 1 0 ¬(P ∧ C ∨ P ∧ 0 ∨ C ∧ 0)
0 0 0 1 1 1 1 ¬(A : B ∧ C ∨A : B ∧ 0 ∨ C ∧ 0)
0 0 1 0 0 0 0 ¬(0 ∧ 0 ∨ 0 ∧ PCIN ∨ 0 ∧ PCIN)
0 0 1 0 0 0 1 ¬(PP1 ∧ 0 ∨ PP1 ∧ PCIN ∨ 0 ∧ PCIN)
0 0 1 0 0 1 0 ¬(P ∧ 0 ∨ P ∧ PCIN ∨ 0 ∧ PCIN)
0 0 1 0 0 1 1 ¬(A : B ∧ 0 ∨A : B ∧ PCIN ∨ 0 ∧ PCIN)
0 0 1 0 1 0 0 ¬(0 ∧ PP2 ∨ 0 ∧ PCIN ∨ PP2 ∧ PCIN)
0 0 1 0 1 0 1 ¬(PP1 ∧ PP2 ∨ PP1 ∧ PCIN ∨ PP2 ∧ PCIN)
0 0 1 0 1 1 0 ¬(P ∧ PP2 ∨ P ∧ PCIN ∨ PP2 ∧ PCIN)
0 0 1 0 1 1 1 ¬(A : B ∧ PP2 ∨A : B ∧ PCIN ∨ PP2 ∧ PCIN)
0 0 1 1 0 0 0 ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ PCIN ∨ 48‘FFFFFFFFFFFF ∧ PCIN)
0 0 1 1 0 0 1 ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ PCIN ∨ 48‘FFFFFFFFFFFF ∧ PCIN)
0 0 1 1 0 1 0 ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ PCIN ∨ 48‘FFFFFFFFFFFF ∧ PCIN)
0 0 1 1 0 1 1 ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ PCIN ∨ 48‘FFFFFFFFFFFF ∧ PCIN)
0 0 1 1 1 0 0 ¬(0 ∧ C ∨ 0 ∧ PCIN ∨ C ∧ PCIN)
0 0 1 1 1 0 1 ¬(PP1 ∧ C ∨ PP1 ∧ PCIN ∨ C ∧ PCIN)
0 0 1 1 1 1 0 ¬(P ∧ C ∨ P ∧ PCIN ∨ C ∧ PCIN)
0 0 1 1 1 1 1 ¬(A : B ∧ C ∨A : B ∧ PCIN ∨ C ∧ PCIN)
0 1 0 0 0 0 0 ¬(0 ∧ 0 ∨ 0 ∧ P ∨ 0 ∧ P )
0 1 0 0 0 0 1 ¬(PP1 ∧ 0 ∨ PP1 ∧ P ∨ 0 ∧ P )
0 1 0 0 0 1 0 ¬(P ∧ 0 ∨ P ∧ P ∨ 0 ∧ P )
0 1 0 0 0 1 1 ¬(A : B ∧ 0 ∨A : B ∧ P ∨ 0 ∧ P )
0 1 0 0 1 0 0 ¬(0 ∧ PP2 ∨ 0 ∧ P ∨ PP2 ∧ P )
0 1 0 0 1 0 1 ¬(PP1 ∧ PP2 ∨ PP1 ∧ P ∨ PP2 ∧ P )
0 1 0 0 1 1 0 ¬(P ∧ PP2 ∨ P ∧ P ∨ PP2 ∧ P )
0 1 0 0 1 1 1 ¬(A : B ∧ PP2 ∨A : B ∧ P ∨ PP2 ∧ P )
0 1 0 1 0 0 0 ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
0 1 0 1 0 0 1 ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
0 1 0 1 0 1 0 ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
0 1 0 1 0 1 1 ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
0 1 0 1 1 0 0 ¬(0 ∧ C ∨ 0 ∧ P ∨ C ∧ P )
0 1 0 1 1 0 1 ¬(PP1 ∧ C ∨ PP1 ∧ P ∨ C ∧ P )
0 1 0 1 1 1 0 ¬(P ∧ C ∨ P ∧ P ∨ C ∧ P )
0 1 0 1 1 1 1 ¬(A : B ∧ C ∨A : B ∧ P ∨ C ∧ P )
0 1 1 0 0 0 0 ¬(0 ∧ 0 ∨ 0 ∧ C ∨ 0 ∧ C)
0 1 1 0 0 0 1 ¬(PP1 ∧ 0 ∨ PP1 ∧ C ∨ 0 ∧ C)
0 1 1 0 0 1 0 ¬(P ∧ 0 ∨ P ∧ C ∨ 0 ∧ C)
0 1 1 0 0 1 1 ¬(A : B ∧ 0 ∨A : B ∧ C ∨ 0 ∧ C)
0 1 1 0 1 0 0 ¬(0 ∧ PP2 ∨ 0 ∧ C ∨ PP2 ∧ C)
0 1 1 0 1 0 1 ¬(PP1 ∧ PP2 ∨ PP1 ∧ C ∨ PP2 ∧ C)
0 1 1 0 1 1 0 ¬(P ∧ PP2 ∨ P ∧ C ∨ PP2 ∧ C)
0 1 1 0 1 1 1 ¬(A : B ∧ PP2 ∨A : B ∧ C ∨ PP2 ∧ C)
0 1 1 1 0 0 0 ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ C ∨ 48‘FFFFFFFFFFFF ∧ C)
0 1 1 1 0 0 1 ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ C ∨ 48‘FFFFFFFFFFFF ∧ C)
0 1 1 1 0 1 0 ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ C ∨ 48‘FFFFFFFFFFFF ∧ C)
0 1 1 1 0 1 1 ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ C ∨ 48‘FFFFFFFFFFFF ∧ C)
0 1 1 1 1 0 0 ¬(0 ∧ C ∨ 0 ∧ C ∨ C ∧ C)
0 1 1 1 1 0 1 ¬(PP1 ∧ C ∨ PP1 ∧ C ∨ C ∧ C)
0 1 1 1 1 1 0 ¬(P ∧ C ∨ P ∧ C ∨ C ∧ C)
0 1 1 1 1 1 1 ¬(A : B ∧ C ∨A : B ∧ C ∨ C ∧ C)
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Table 8.18: ALUMODE 1110 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
1 0 0 0 0 0 0 ¬(0 ∧ 0 ∨ 0 ∧ P ∨ 0 ∧ P )
1 0 0 0 0 0 1 ¬(PP1 ∧ 0 ∨ PP1 ∧ P ∨ 0 ∧ P )
1 0 0 0 0 1 0 ¬(P ∧ 0 ∨ P ∧ P ∨ 0 ∧ P )
1 0 0 0 0 1 1 ¬(A : B ∧ 0 ∨A : B ∧ P ∨ 0 ∧ P )
1 0 0 0 1 0 0 ¬(0 ∧ PP2 ∨ 0 ∧ P ∨ PP2 ∧ P )
1 0 0 0 1 0 1 ¬(PP1 ∧ PP2 ∨ PP1 ∧ P ∨ PP2 ∧ P )
1 0 0 0 1 1 0 ¬(P ∧ PP2 ∨ P ∧ P ∨ PP2 ∧ P )
1 0 0 0 1 1 1 ¬(A : B ∧ PP2 ∨A : B ∧ P ∨ PP2 ∧ P )
1 0 0 1 0 0 0 ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
1 0 0 1 0 0 1 ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
1 0 0 1 0 1 0 ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
1 0 0 1 0 1 1 ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ P ∨ 48‘FFFFFFFFFFFF ∧ P )
1 0 0 1 1 0 0 ¬(0 ∧ C ∨ 0 ∧ P ∨ C ∧ P )
1 0 0 1 1 0 1 ¬(PP1 ∧ C ∨ PP1 ∧ P ∨ C ∧ P )
1 0 0 1 1 1 0 ¬(P ∧ C ∨ P ∧ P ∨ C ∧ P )
1 0 0 1 1 1 1 ¬(A : B ∧ C ∨A : B ∧ P ∨ C ∧ P )
1 0 1 0 0 0 0 ¬(0 ∧ 0 ∨ 0 ∧RS PCIN ∨ 0 ∧RS PCIN)
1 0 1 0 0 0 1 ¬(PP1 ∧ 0 ∨ PP1 ∧RS PCIN ∨ 0 ∧RS PCIN)
1 0 1 0 0 1 0 ¬(P ∧ 0 ∨ P ∧RS PCIN ∨ 0 ∧RS PCIN)
1 0 1 0 0 1 1 ¬(A : B ∧ 0 ∨A : B ∧RS PCIN ∨ 0 ∧RS PCIN)
1 0 1 0 1 0 0 ¬(0 ∧ PP2 ∨ 0 ∧RS PCIN ∨ PP2 ∧RS PCIN)
1 0 1 0 1 0 1 ¬(PP1 ∧ PP2 ∨ PP1 ∧RS PCIN ∨ PP2 ∧RS PCIN)
1 0 1 0 1 1 0 ¬(P ∧ PP2 ∨ P ∧RS PCIN ∨ PP2 ∧RS PCIN)
1 0 1 0 1 1 1 ¬(A : B ∧ PP2 ∨A : B ∧RS PCIN ∨ PP2 ∧RS PCIN)
1 0 1 1 0 0 0 ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧RS PCIN ∨ 48‘FFFFFFFFFFFF ∧RS PCIN)
1 0 1 1 0 0 1 ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧RS PCIN ∨ 48‘FFFFFFFFFFFF ∧RS PCIN)
1 0 1 1 0 1 0 ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧RS PCIN ∨ 48‘FFFFFFFFFFFF ∧RS PCIN)
1 0 1 1 0 1 1 ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧RS PCIN ∨ 48‘FFFFFFFFFFFF ∧RS PCIN)
1 0 1 1 1 0 0 ¬(0 ∧ C ∨ 0 ∧RS PCIN ∨ C ∧RS PCIN)
1 0 1 1 1 0 1 ¬(PP1 ∧ C ∨ PP1 ∧RS PCIN ∨ C ∧RS PCIN)
1 0 1 1 1 1 0 ¬(P ∧ C ∨ P ∧RS PCIN ∨ C ∧RS PCIN)
1 0 1 1 1 1 1 ¬(A : B ∧ C ∨A : B ∧RS PCIN ∨ C ∧RS PCIN)
1 1 0 0 0 0 0 ¬(0 ∧ 0 ∨ 0 ∧RS P ∨ 0 ∧RS P )
1 1 0 0 0 0 1 ¬(PP1 ∧ 0 ∨ PP1 ∧RS P ∨ 0 ∧RS P )
1 1 0 0 0 1 0 ¬(P ∧ 0 ∨ P ∧RS P ∨ 0 ∧RS P )
1 1 0 0 0 1 1 ¬(A : B ∧ 0 ∨A : B ∧RS P ∨ 0 ∧RS P )
1 1 0 0 1 0 0 ¬(0 ∧ PP2 ∨ 0 ∧RS P ∨ PP2 ∧RS P )
1 1 0 0 1 0 1 ¬(PP1 ∧ PP2 ∨ PP1 ∧RS P ∨ PP2 ∧RS P )
1 1 0 0 1 1 0 ¬(P ∧ PP2 ∨ P ∧RS P ∨ PP2 ∧RS P )
1 1 0 0 1 1 1 ¬(A : B ∧ PP2 ∨A : B ∧RS P ∨ PP2 ∧RS P )
1 1 0 1 0 0 0 ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 0 1 0 0 1 ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 0 1 0 1 0 ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 0 1 0 1 1 ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 0 1 1 0 0 ¬(0 ∧ C ∨ 0 ∧RS P ∨ C ∧RS P )
1 1 0 1 1 0 1 ¬(PP1 ∧ C ∨ PP1 ∧RS P ∨ C ∧RS P )
1 1 0 1 1 1 0 ¬(P ∧ C ∨ P ∧RS P ∨ C ∧RS P )
1 1 0 1 1 1 1 ¬(A : B ∧ C ∨A : B ∧RS P ∨ C ∧RS P )
1 1 1 0 0 0 0 ¬(0 ∧ 0 ∨ 0 ∧RS P ∨ 0 ∧RS P )
1 1 1 0 0 0 1 ¬(PP1 ∧ 0 ∨ PP1 ∧RS P ∨ 0 ∧RS P )
1 1 1 0 0 1 0 ¬(P ∧ 0 ∨ P ∧RS P ∨ 0 ∧RS P )
1 1 1 0 0 1 1 ¬(A : B ∧ 0 ∨A : B ∧RS P ∨ 0 ∧RS P )
1 1 1 0 1 0 0 ¬(0 ∧ PP2 ∨ 0 ∧RS P ∨ PP2 ∧RS P )
1 1 1 0 1 0 1 ¬(PP1 ∧ PP2 ∨ PP1 ∧RS P ∨ PP2 ∧RS P )
1 1 1 0 1 1 0 ¬(P ∧ PP2 ∨ P ∧RS P ∨ PP2 ∧RS P )
1 1 1 0 1 1 1 ¬(A : B ∧ PP2 ∨A : B ∧RS P ∨ PP2 ∧RS P )
1 1 1 1 0 0 0 ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 1 1 0 0 1 ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 1 1 0 1 0 ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 1 1 0 1 1 ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧RS P ∨ 48‘FFFFFFFFFFFF ∧RS P )
1 1 1 1 1 0 0 ¬(0 ∧ C ∨ 0 ∧RS P ∨ C ∧RS P )
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Table 8.18: ALUMODE 1110 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
1 1 1 1 1 0 1 ¬(PP1 ∧ C ∨ PP1 ∧RS P ∨ C ∧RS P )
1 1 1 1 1 1 0 ¬(P ∧ C ∨ P ∧RS P ∨ C ∧RS P )
1 1 1 1 1 1 1 ¬(A : B ∧ C ∨A : B ∧RS P ∨ C ∧RS P )

Table 8.19: ALUMODE 1111 Observed Results

OP Modes Observed OutputsZ Y X
0 0 0 0 0 0 0 ¬(0 ∧ 0 ∨ 0 ∧ ¬0 ∨ 0 ∧ ¬0)
0 0 0 0 0 0 1 ¬(PP1 ∧ 0 ∨ PP1 ∧ ¬0 ∨ 0 ∧ ¬0)
0 0 0 0 0 1 0 ¬(P ∧ 0 ∨ P ∧ ¬0 ∨ 0 ∧ ¬0)
0 0 0 0 0 1 1 ¬(A : B ∧ 0 ∨A : B ∧ ¬0 ∨ 0 ∧ ¬0)
0 0 0 0 1 0 0 ¬(0 ∧ PP2 ∨ 0 ∧ ¬0 ∨ PP2 ∧ ¬0)
0 0 0 0 1 0 1 ¬(PP1 ∧ PP2 ∨ PP1 ∧ ¬0 ∨ PP2 ∧ ¬0)
0 0 0 0 1 1 0 ¬(P ∧ PP2 ∨ P ∧ ¬0 ∨ PP2 ∧ ¬0)
0 0 0 0 1 1 1 ¬(A : B ∧ PP2 ∨A : B ∧ ¬0 ∨ PP2 ∧ ¬0)
0 0 0 1 0 0 0 ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬0 ∨ 48‘FFFFFFFFFFFF ∧ ¬0)
0 0 0 1 0 0 1 ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬0 ∨ 48‘FFFFFFFFFFFF ∧ ¬0)
0 0 0 1 0 1 0 ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬0 ∨ 48‘FFFFFFFFFFFF ∧ ¬0)
0 0 0 1 0 1 1 ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬0 ∨ 48‘FFFFFFFFFFFF ∧ ¬0)
0 0 0 1 1 0 0 ¬(0 ∧ C ∨ 0 ∧ ¬0 ∨ C ∧ ¬0)
0 0 0 1 1 0 1 ¬(PP1 ∧ C ∨ PP1 ∧ ¬0 ∨ C ∧ ¬0)
0 0 0 1 1 1 0 ¬(P ∧ C ∨ P ∧ ¬0 ∨ C ∧ ¬0)
0 0 0 1 1 1 1 ¬(A : B ∧ C ∨A : B ∧ ¬0 ∨ C ∧ ¬0)
0 0 1 0 0 0 0 ¬(0 ∧ 0 ∨ 0 ∧ ¬PCIN ∨ 0 ∧ ¬PCIN)
0 0 1 0 0 0 1 ¬(PP1 ∧ 0 ∨ PP1 ∧ ¬PCIN ∨ 0 ∧ ¬PCIN)
0 0 1 0 0 1 0 ¬(P ∧ 0 ∨ P ∧ ¬PCIN ∨ 0 ∧ ¬PCIN)
0 0 1 0 0 1 1 ¬(A : B ∧ 0 ∨A : B ∧ ¬PCIN ∨ 0 ∧ ¬PCIN)
0 0 1 0 1 0 0 ¬(0 ∧ PP2 ∨ 0 ∧ ¬PCIN ∨ PP2 ∧ ¬PCIN)
0 0 1 0 1 0 1 ¬(PP1 ∧ PP2 ∨ PP1 ∧ ¬PCIN ∨ PP2 ∧ ¬PCIN)
0 0 1 0 1 1 0 ¬(P ∧ PP2 ∨ P ∧ ¬PCIN ∨ PP2 ∧ ¬PCIN)
0 0 1 0 1 1 1 ¬(A : B ∧ PP2 ∨A : B ∧ ¬PCIN ∨ PP2 ∧ ¬PCIN)
0 0 1 1 0 0 0 ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬PCIN)
0 0 1 1 0 0 1 ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬PCIN)
0 0 1 1 0 1 0 ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬PCIN)
0 0 1 1 0 1 1 ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬PCIN)
0 0 1 1 1 0 0 ¬(0 ∧ C ∨ 0 ∧ ¬PCIN ∨ C ∧ ¬PCIN)
0 0 1 1 1 0 1 ¬(PP1 ∧ C ∨ PP1 ∧ ¬PCIN ∨ C ∧ ¬PCIN)
0 0 1 1 1 1 0 ¬(P ∧ C ∨ P ∧ ¬PCIN ∨ C ∧ ¬PCIN)
0 0 1 1 1 1 1 ¬(A : B ∧ C ∨A : B ∧ ¬PCIN ∨ C ∧ ¬PCIN)
0 1 0 0 0 0 0 ¬(0 ∧ 0 ∨ 0 ∧ ¬P ∨ 0 ∧ ¬P )
0 1 0 0 0 0 1 ¬(PP1 ∧ 0 ∨ PP1 ∧ ¬P ∨ 0 ∧ ¬P )
0 1 0 0 0 1 0 ¬(P ∧ 0 ∨ P ∧ ¬P ∨ 0 ∧ ¬P )
0 1 0 0 0 1 1 ¬(A : B ∧ 0 ∨A : B ∧ ¬P ∨ 0 ∧ ¬P )
0 1 0 0 1 0 0 ¬(0 ∧ PP2 ∨ 0 ∧ ¬P ∨ PP2 ∧ ¬P )
0 1 0 0 1 0 1 ¬(PP1 ∧ PP2 ∨ PP1 ∧ ¬P ∨ PP2 ∧ ¬P )
0 1 0 0 1 1 0 ¬(P ∧ PP2 ∨ P ∧ ¬P ∨ PP2 ∧ ¬P )
0 1 0 0 1 1 1 ¬(A : B ∧ PP2 ∨A : B ∧ ¬P ∨ PP2 ∧ ¬P )
0 1 0 1 0 0 0 ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
0 1 0 1 0 0 1 ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
0 1 0 1 0 1 0 ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
0 1 0 1 0 1 1 ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
0 1 0 1 1 0 0 ¬(0 ∧ C ∨ 0 ∧ ¬P ∨ C ∧ ¬P )
0 1 0 1 1 0 1 ¬(PP1 ∧ C ∨ PP1 ∧ ¬P ∨ C ∧ ¬P )
0 1 0 1 1 1 0 ¬(P ∧ C ∨ P ∧ ¬P ∨ C ∧ ¬P )
0 1 0 1 1 1 1 ¬(A : B ∧ C ∨A : B ∧ ¬P ∨ C ∧ ¬P )
0 1 1 0 0 0 0 ¬(0 ∧ 0 ∨ 0 ∧ ¬C ∨ 0 ∧ ¬C)
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Table 8.19: ALUMODE 1111 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
0 1 1 0 0 0 1 ¬(PP1 ∧ 0 ∨ PP1 ∧ ¬C ∨ 0 ∧ ¬C)
0 1 1 0 0 1 0 ¬(P ∧ 0 ∨ P ∧ ¬C ∨ 0 ∧ ¬C)
0 1 1 0 0 1 1 ¬(A : B ∧ 0 ∨A : B ∧ ¬C ∨ 0 ∧ ¬C)
0 1 1 0 1 0 0 ¬(0 ∧ PP2 ∨ 0 ∧ ¬C ∨ PP2 ∧ ¬C)
0 1 1 0 1 0 1 ¬(PP1 ∧ PP2 ∨ PP1 ∧ ¬C ∨ PP2 ∧ ¬C)
0 1 1 0 1 1 0 ¬(P ∧ PP2 ∨ P ∧ ¬C ∨ PP2 ∧ ¬C)
0 1 1 0 1 1 1 ¬(A : B ∧ PP2 ∨A : B ∧ ¬C ∨ PP2 ∧ ¬C)
0 1 1 1 0 0 0 ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬C ∨ 48‘FFFFFFFFFFFF ∧ ¬C)
0 1 1 1 0 0 1 ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬C ∨ 48‘FFFFFFFFFFFF ∧ ¬C)
0 1 1 1 0 1 0 ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬C ∨ 48‘FFFFFFFFFFFF ∧ ¬C)
0 1 1 1 0 1 1 ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬C ∨ 48‘FFFFFFFFFFFF ∧ ¬C)
0 1 1 1 1 0 0 ¬(0 ∧ C ∨ 0 ∧ ¬C ∨ C ∧ ¬C)
0 1 1 1 1 0 1 ¬(PP1 ∧ C ∨ PP1 ∧ ¬C ∨ C ∧ ¬C)
0 1 1 1 1 1 0 ¬(P ∧ C ∨ P ∧ ¬C ∨ C ∧ ¬C)
0 1 1 1 1 1 1 ¬(A : B ∧ C ∨A : B ∧ ¬C ∨ C ∧ ¬C)
1 0 0 0 0 0 0 ¬(0 ∧ 0 ∨ 0 ∧ ¬P ∨ 0 ∧ ¬P )
1 0 0 0 0 0 1 ¬(PP1 ∧ 0 ∨ PP1 ∧ ¬P ∨ 0 ∧ ¬P )
1 0 0 0 0 1 0 ¬(P ∧ 0 ∨ P ∧ ¬P ∨ 0 ∧ ¬P )
1 0 0 0 0 1 1 ¬(A : B ∧ 0 ∨A : B ∧ ¬P ∨ 0 ∧ ¬P )
1 0 0 0 1 0 0 ¬(0 ∧ PP2 ∨ 0 ∧ ¬P ∨ PP2 ∧ ¬P )
1 0 0 0 1 0 1 ¬(PP1 ∧ PP2 ∨ PP1 ∧ ¬P ∨ PP2 ∧ ¬P )
1 0 0 0 1 1 0 ¬(P ∧ PP2 ∨ P ∧ ¬P ∨ PP2 ∧ ¬P )
1 0 0 0 1 1 1 ¬(A : B ∧ PP2 ∨A : B ∧ ¬P ∨ PP2 ∧ ¬P )
1 0 0 1 0 0 0 ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
1 0 0 1 0 0 1 ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
1 0 0 1 0 1 0 ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
1 0 0 1 0 1 1 ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬P ∨ 48‘FFFFFFFFFFFF ∧ ¬P )
1 0 0 1 1 0 0 ¬(0 ∧ C ∨ 0 ∧ ¬P ∨ C ∧ ¬P )
1 0 0 1 1 0 1 ¬(PP1 ∧ C ∨ PP1 ∧ ¬P ∨ C ∧ ¬P )
1 0 0 1 1 1 0 ¬(P ∧ C ∨ P ∧ ¬P ∨ C ∧ ¬P )
1 0 0 1 1 1 1 ¬(A : B ∧ C ∨A : B ∧ ¬P ∨ C ∧ ¬P )
1 0 1 0 0 0 0 ¬(0 ∧ 0 ∨ 0 ∧ ¬RS PCIN ∨ 0 ∧ ¬RS PCIN)
1 0 1 0 0 0 1 ¬(PP1 ∧ 0 ∨ PP1 ∧ ¬RS PCIN ∨ 0 ∧ ¬RS PCIN)
1 0 1 0 0 1 0 ¬(P ∧ 0 ∨ P ∧ ¬RS PCIN ∨ 0 ∧ ¬RS PCIN)
1 0 1 0 0 1 1 ¬(A : B ∧ 0 ∨A : B ∧ ¬RS PCIN ∨ 0 ∧ ¬RS PCIN)
1 0 1 0 1 0 0 ¬(0 ∧ PP2 ∨ 0 ∧ ¬RS PCIN ∨ PP2 ∧ ¬RS PCIN)
1 0 1 0 1 0 1 ¬(PP1 ∧ PP2 ∨ PP1 ∧ ¬RS PCIN ∨ PP2 ∧ ¬RS PCIN)
1 0 1 0 1 1 0 ¬(P ∧ PP2 ∨ P ∧ ¬RS PCIN ∨ PP2 ∧ ¬RS PCIN)
1 0 1 0 1 1 1 ¬(A : B ∧ PP2 ∨A : B ∧ ¬RS PCIN ∨ PP2 ∧ ¬RS PCIN)
1 0 1 1 0 0 0 ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬RS PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬RS PCIN)
1 0 1 1 0 0 1 ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬RS PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬RS PCIN)
1 0 1 1 0 1 0 ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬RS PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬RS PCIN)
1 0 1 1 0 1 1 ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬RS PCIN ∨ 48‘FFFFFFFFFFFF ∧ ¬RS PCIN)
1 0 1 1 1 0 0 ¬(0 ∧ C ∨ 0 ∧ ¬RS PCIN ∨ C ∧ ¬RS PCIN)
1 0 1 1 1 0 1 ¬(PP1 ∧ C ∨ PP1 ∧ ¬RS PCIN ∨ C ∧ ¬RS PCIN)
1 0 1 1 1 1 0 ¬(P ∧ C ∨ P ∧ ¬RS PCIN ∨ C ∧ ¬RS PCIN)
1 0 1 1 1 1 1 ¬(A : B ∧ C ∨A : B ∧ ¬RS PCIN ∨ C ∧ ¬RS PCIN)
1 1 0 0 0 0 0 ¬(0 ∧ 0 ∨ 0 ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 0 0 0 0 1 ¬(PP1 ∧ 0 ∨ PP1 ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 0 0 0 1 0 ¬(P ∧ 0 ∨ P ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 0 0 0 1 1 ¬(A : B ∧ 0 ∨A : B ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 0 0 1 0 0 ¬(0 ∧ PP2 ∨ 0 ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 0 0 1 0 1 ¬(PP1 ∧ PP2 ∨ PP1 ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 0 0 1 1 0 ¬(P ∧ PP2 ∨ P ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 0 0 1 1 1 ¬(A : B ∧ PP2 ∨A : B ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 0 1 0 0 0 ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 0 1 0 0 1 ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 0 1 0 1 0 ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 0 1 0 1 1 ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 0 1 1 0 0 ¬(0 ∧ C ∨ 0 ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 0 1 1 0 1 ¬(PP1 ∧ C ∨ PP1 ∧ ¬RS P ∨ C ∧ ¬RS P )

Continued on next page
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Table 8.19: ALUMODE 1111 Observed Results (cont.)

OP Modes Observed OutputsZ Y X
1 1 0 1 1 1 0 ¬(P ∧ C ∨ P ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 0 1 1 1 1 ¬(A : B ∧ C ∨A : B ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 1 0 0 0 0 ¬(0 ∧ 0 ∨ 0 ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 1 0 0 0 1 ¬(PP1 ∧ 0 ∨ PP1 ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 1 0 0 1 0 ¬(P ∧ 0 ∨ P ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 1 0 0 1 1 ¬(A : B ∧ 0 ∨A : B ∧ ¬RS P ∨ 0 ∧ ¬RS P )
1 1 1 0 1 0 0 ¬(0 ∧ PP2 ∨ 0 ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 1 0 1 0 1 ¬(PP1 ∧ PP2 ∨ PP1 ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 1 0 1 1 0 ¬(P ∧ PP2 ∨ P ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 1 0 1 1 1 ¬(A : B ∧ PP2 ∨A : B ∧ ¬RS P ∨ PP2 ∧ ¬RS P )
1 1 1 1 0 0 0 ¬(0 ∧ 48‘FFFFFFFFFFFF ∨ 0 ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 1 1 0 0 1 ¬(PP1 ∧ 48‘FFFFFFFFFFFF ∨ PP1 ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 1 1 0 1 0 ¬(P ∧ 48‘FFFFFFFFFFFF ∨ P ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 1 1 0 1 1 ¬(A : B ∧ 48‘FFFFFFFFFFFF ∨A : B ∧ ¬RS P ∨ 48‘FFFFFFFFFFFF ∧ ¬RS P )
1 1 1 1 1 0 0 ¬(0 ∧ C ∨ 0 ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 1 1 1 0 1 ¬(PP1 ∧ C ∨ PP1 ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 1 1 1 1 0 ¬(P ∧ C ∨ P ∧ ¬RS P ∨ C ∧ ¬RS P )
1 1 1 1 1 1 1 ¬(A : B ∧ C ∨A : B ∧ ¬RS P ∨ C ∧ ¬RS P )
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1.	INTRODUCTION	

This	 document	 represents	 the	 overall	 architecture	 of	 a	 test	 article	 designed	 at	 University	 of	
Southern	California	 Information	Sciences	 Institute	 for	 the	DARPA	IRIS	program,	Thrust	Area	4a	–	
Reliability	in	Digital	ASICs.	The	test	article	contains	a	RISC	processor	connected	through	a	point‐to‐
point	interconnect	to	an	external	memory	interface.	An	overview	and	block	diagram	are	presented	
for	the	test	article,	followed	by	references	to	other	documents	for	further	detail.		A	signal	listing	and	
physical	die	info	are	also	provided.	
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2.	ITAGR1	OVERVIEW 	

2-1. OVERALL TEST ARTICLE ARCHITECTURE 

As	noted	above,	this	TA4AP1	test	article	(internal	code	name	of	itagr1)	contains	a	RISC	processor	
connected	to	an	external	memory	interface	through	a	point‐to‐point	interconnect.		The	organization	
of	the	RISC	processor	with	respect	to	the	interconnect	and	the	external	memory	interface	is	shown	
in	Figure	1,	while	a	depiction	of	the	RISC	processor	is	shown	in	Figure	2.		The	design	of	the	RISC	
processor	is	similar	to	that	of	a	design	from	the	DARPA	Trust	in	IC	program	that	was	called	TA2	
Software	Article,	with	one	notable	exception.		The	memory	interface	of	ITAGR1	has	been	
redesigned	to	transform	memory	accesses	into	a	burst	of	32‐bit	transfers	to	reduce	the	pad/pin	
count	of	the	resulting	design.	The	point‐to‐point	interconnect	is	implemented	by	the	node	bus	
interface	(or	memory	interface)	of	each	RISC	processor.		Besides	serving	as	a	controller	for	an	
external	memory	system,	the	external	memory	interface	contains	a	node	bus	interface	for	
interaction	with	the	RISC	processor.	More	detailed	information	about	the	subcomponents	of	
ITAGR1	can	be	found	in	the	accompanying	documents	Test	Article	2	Software	Article	RISC	Processor	
Architecture	Overview,	Test	Article	2	Software	Article	RISC	Processor	Instruction	Set	Manual,	and	Test	
Article	2	Software	Article	Memory	Interface	Description.	

	

FIGURE	1	ITAGR1	ORGANIZATION	

	

	

FIGURE	2	ITAGR1	RISC	PROCESSOR	ORGANIZATION	



	

	 5

	

Since	the	only	primary	external	interface	concerns	the	external	memory	interface,	almost	all	the	
significant	signal	I/O	is	associated	with	this	interface.	A	listing	of	all	signal	I/O	is	as	follows:	

General	I/O	

	 input clk,		reset,	EMAA	

External	Memory	Interface	related	I/O	

input	[31:0]	edram_do;	
output	[31:0]	edram_di;	
output	[7:0]	edram_bw;	
output	[15:0]	edram_addr;	
output	edram_write_enable_n,		edram_read_enable_n;	
	

Custom	internal	scan	chain	related	I/O	

input	Scan_I,	Scan_E	
output	Scan_O	

JTAG	boundary	scan	chain	related	I/O	

input	TCK,	TRSTN,	TDI,	TMS	
output	TDO	

The	EMAA	input	is	a	signal	for	fine‐tune	adjustment	of	the	latency	of	the	SRAM	used	for	the	
instruction	cache.		The	default	value	for	this	input	is	0	(GND).	For	details,	refer	to	the	ARM	memory	
compiler	datasheets.		It	should	also	be	noted	that	the	edram_bw	signals	are	32‐bit	word	write	
enable	signals	for	the	memory	interface.		Every	access	through	the	memory	interface	is	a	256‐bit	
wide	word	that	is	serialized	into	a	burst	of	eight	32‐bit	transfers.	
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3.	TEST	ARTICLE	PINOUT	

The	table	below	lists	the	pad‐to‐signal	assignment	for	the	test	article	die	as	well	as	the	pin‐to‐
signal	 assignment	 for	 test	 articles	 that	 are	 bonded	 in	 PGA132M	 packages.	 Pad	 numbering	 is	
consistent	with	the	MOSIS	convention	for	this	package;	namely,	pad	1	is	the	rightmost	pad	on	the	
top	edge	of	the	chip,	and	numbering	proceeds	counter‐clockwise.	For	more	detail	on	this	PGA132M	
package	 and	 bonding	 diagram	 numbering	 conventions,	 refer	 to	 documentation	 found	 at	
http://www.mosis.com/Technical/Packaging/Ceramic/menu‐pkg‐ceramic.html.	

Pad Number / 
Bonding Finger Pin Signal Name

Signal 
Type

Pad Number / 
Bonding Finger Pin Signal Name

Signal 
Type

Pad Number / 
Bonding Finger Pin Signal Name

Signal 
Type

1 C3 padVDD 2.5V 45 N6 Scan_O O 89 E14 edram_di_3 O
2 B1 padVSS GND 46 P6 Scan_I I 90 D14 edram_di_2 O
3 C2 edram_do_31 I 47 P7 Scan_E I 91 E13 edram_di_1 O
4 D3 edram_do_30 I 48 N7 EMAA I 92 C14 edram_di_0 O
5 C1 edram_do_29 I 49 M7 clk I 93 D13 edram_bw_7 O
6 D2 edram_do_28 I 50 M8 reset I 94 E12 padVDD 2.5V
7 D1 edram_do_27 I 51 N8 padVDD 2.5V 95 B14 padVSS GND
8 E3 edram_do_26 I 52 P8 padVSS GND 96 C13 edram_bw_6 O
9 E2 edram_do_25 I 53 P9 edram_di_31 O 97 D12 edram_bw_5 O

10 E1 edram_do_24 I 54 N9 edram_di_30 O 98 A14 edram_bw_4 O
11 F3 edram_do_23 I 55 M9 edram_di_29 O 99 B13 edram_bw_3 O
12 F2 edram_do_22 I 56 P10 edram_di_28 O 100 C12 edram_bw_2 O
13 F1 edram_do_21 I 57 P11 edram_di_27 O 101 A13 edram_bw_1 O
14 G1 edram_do_20 I 58 N10 edram_di_26 O 102 B12 edram_bw_0 O
15 G2 edram_do_19 I 59 P12 edram_di_25 O 103 C11 edram_addr_14 O
16 G3 coreVDD 1.0V 60 N11 edram_di_24 O 104 A12 padVDD 2.5V
17 H3 coreVSS GND 61 M10 padVDD 2.5V 105 B11 padVSS GND
18 H2 edram_do_18 I 62 P13 padVSS GND 106 A11 edram_addr_15 O
19 H1 edram_do_17 I 63 N12 edram_di_23 O 107 C10 edram_addr_13 O
20 J1 edram_do_16 I 64 M11 edram_di_22 O 108 B10 edram_addr_12 O
21 J2 edram_do_15 I 65 P14 edram_di_21 O 109 A10 edram_addr_11 O
22 J3 edram_do_14 I 66 N13 edram_di_20 O 110 C9 edram_addr_10 O
23 K1 edram_do_13 I 67 M12 edram_di_19 O 111 B9 edram_addr_9 O
24 L1 edram_do_12 I 68 N14 edram_di_18 O 112 A9 edram_addr_8 O
25 K2 edram_do_11 I 69 M13 edram_di_17 O 113 A8 padVDD 2.5V
26 M1 edram_do_10 I 70 L12 edram_di_16 O 114 B8 padVSS GND
27 L2 edram_do_9 I 71 M14 padVDD 2.5V 115 C8 edram_addr_7 O
28 K3 edram_do_8 I 72 L13 padVSS GND 116 C7 edram_addr_6 O
29 N1 edram_do_7 I 73 L14 edram_di_15 O 117 B7 edram_addr_5 O
30 M2 edram_do_6 I 74 K12 edram_di_14 O 118 A7 edram_addr_4 O
31 L3 edram_do_5 I 75 K13 edram_di_13 O 119 A6 edram_addr_3 O
32 P1 padVDD 2.5V 76 K14 edram_di_12 O 120 B6 edram_addr_2 O
33 N2 padVSS GND 77 J12 edram_di_11 O 121 C6 edram_addr_1 O
34 M3 edram_do_4 I 78 J13 edram_di_10 O 122 A5 edram_addr_0 O
35 P2 edram_do_3 I 79 J14 edram_di_9 O 123 A4 spare NC
36 N3 edram_do_2 I 80 H14 edram_di_8 O 124 B5 TDO O
37 M4 edram_do_1 I 81 H13 padVDD 2.5V 125 A3 coreVDD 1.0V
38 P3 padVDD 2.5V 82 H12 padVSS GND 126 B4 coreVSS GND
39 N4 padVSS GND 83 G12 coreVDD 1.0V 127 C5 padVDD 2.5V
40 P4 coreVDD 1.0V 84 G13 coreVSS GND 128 A2 padVSS GND
41 M5 coreVSS GND 85 G14 edram_di_7 O 129 B3 TDI I
42 N5 edram_do_0 I 86 F14 edram_di_6 O 130 C4 TMS I
43 P5 edram_write_enable_n O 87 F13 edram_di_5 O 131 A1 TRSTN I
44 M6 edram_read_enable_n O 88 F12 edram_di_4 O 132 B2 TCK I 	
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4.	ELECTRICAL	AND	TIMING	INFORMATION	

As	shown	in	the	previous	section,	TA4AP1	uses	a	core	Vdd	of	1.0V	and	a	pad	Vdd	of	2.5V.		
Output	pad	drivers	are	rated	at	9mA;	thus,	capacitive	loading	should	be	limited	to	around	10pF	for	
reasonable	slew	rates	on	the	output	signals	that	will	allow	achieving	the	propagation	delays	shown	
below.	

All	timing	information	below	is	based	on	limited	testing	and	simulation	estimates.	The	worst‐
case	conditions	used	during	the	testing	were	(T	=	room	temperature,	Vdd_core	=	0.97V,	Vdd_io	=	
2.25V).		For	these	conditions,	a	clock	period	of	7.2ns	was	achieved	in	all	cases.	For	simplicity,	all	
inputs	have	been	grouped	together.		While	set‐up	times	and	hold	times	vary	among	inputs,	the	
values	listed	below	represent	the	worst‐case	values	needed	for	correct	operation.			

CLK

stableinputs

outputs values

tsu th tpdseq

	

	

Parameter Value*

tsu 1ns*

th 5ns*

tpdseq 7.2ns*

	

More	detailed	electrical	and	timing	information	will	be	added	when	available	after	reliability	
testing	is	conducted.	

*		Chips	have	not	been	thoroughly	tested	for	absolute	input/output	timing	info.	Depending	on	tester	
loads,	input	transition	and	output	sampling	times	relative	to	the	clock	edge	may	require	
adjustment;	however,	a	clock	period	of	7.2ns	should	be	achievable	in	all	cases.	
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5.	PHYSICAL	CHIP	DIMENSIONS	AND	CORE	LOCATION	

The	design	submitted	 for	 fabrication	was	prepared	with	version	V2.2.0.2IBM	of	 the	 IBM	9SF	
PDK	 using	 the	 IBM	 6_02_00_00_LB digital	 stack	 (for	 more	 info	 on	 this	 technology,	 refer	 to	
http://www.mosis.com/ibm/9sf/;	 note	 that	 the	 PDK	 DRC	 files	 may	 refer	 to	 this	 stack	 as	
9SF_6_02_00).	The	design	as	submitted	measured	2.75mm	x	2.75mm;	however,	with	the	inclusion	
of	 scribe	 lanes	 and	 other	margins	 (refer	 to	 http://www.mosis.com/products/assembly/#die‐size	
for	 examples),	 the	 fabricated	 die	 size	 may	 be	 somewhat	 larger.	 The	 fiducial	 provided	 by	 IBM	
contains	marking	identifiers	in	the	lower	left	and	upper	right	corners	of	the	die	and	was	included	in	
the	design	file.				Refer	to	the	figure	below,	which	shows	relative	locations	of	fiducial	markings	and	
the	ITAGR1	chip	core.		The	chip	core,	inside	the	pad	ring,	is	roughly	1.57m		x	1.49	m.	The	table	
below	 provides	 x‐y	 coordinate	 information	 for	 the	 points	 denoted	 in	 the	 figure.	 Note	 that	 each	
character	in	the	fiducial	lettering	is	comprised	of	multiple	polygons.		

	

FIGURE	3	DEPICTION	OF	ITAGR1	DIE	ORGANIZATION	(NOT	TO	SCALE)	

	

Point	of	Interest	
Coordinates	(m)	

x y	

Lower	left	corner	of	lower	left	polygon	of	
the	“1”	in	the	metal1	“1234A”	fiducial	

2608.675	 2637.675	

Lower	left	corner	of	lower	left	polygon	of	
the	“1”	in	the	polysilicon	“1234A”	fiducial	

2608.675	 2608.675	

Upper	right	corner	of	upper	right	polygon	
of	the	“M”	in	the	“IBM”	fiducial	

141.325	 141.325	

Lower	left	corner	of		ITAGR1	core 618.56 632.56	
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1. INTRODUCTION 

This document represents the overall architecture of a digital test article designed at University of 
Southern California Information Sciences Institute for the DARPA IRIS program, Phase 2. The test 
article contains a RISC processor connected through a point-to-point interconnect to an external 
memory interface. An overview and block diagram are presented for the test article, followed by 
references to other documents for further detail.  A signal listing and physical die info are also 
provided. 
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2. ITAGR1 OVERVIEW  

2-1. OVERALL TEST ARTICLE ARCHITECTURE 

As noted above, this IRIS Phase 2 digital test article (internal code name of itagr1) contains a RISC 
processor connected to an external memory interface through a point-to-point interconnect.  The 
organization of the RISC processor with respect to the interconnect and the external memory 
interface is shown in Figure 1, while a depiction of the RISC processor is shown in Figure 2.  The 
design of the RISC processor is similar to that of a design from the DARPA Trust in IC program that 
was called TA2 Software Article, with one notable exception.  The memory interface of ITAGR1 has 
been redesigned to transform memory accesses into a burst of 32-bit transfers to reduce the 
pad/pin count of the resulting design. The point-to-point interconnect is implemented by the node 
bus interface (or interconnect interface), where one instance of the node bus interface resides in 
the RISC processor core and another in the external memory interface. More detailed information 
about the subcomponents of ITAGR1 can be found in the accompanying documents Test Article 2 
Software Article RISC Processor Architecture Overview, Test Article 2 Software Article RISC Processor 
Instruction Set Manual, and Test Article 2 Software Article Memory Interface Description. 

RISC
Processor

External
Memory
Interface

Off-Chip
Memory Signals

DFT
Interface

On-Chip
Interconnect

 

FIGURE 1 ITAGR1 ORGANIZATION 

 

 

FIGURE 2 ITAGR1 RISC PROCESSOR ORGANIZATION 
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Since the only primary external interface concerns the external memory interface, almost all the 
significant signal I/O is associated with this interface. A listing of all signal I/O is as follows: 

General I/O 

 input clk,  reset, EMAA 

External Memory Interface related I/O 

input [0:31] edram_do; 
output [0:31] edram_di; 
output [0:7] edram_bw; 
output [0:15] edram_addr; 
output edram_write_enable_n,  edram_read_enable_n; 

Custom internal scan chain related I/O 

input Scan_I, Scan_E 
output Scan_O 

JTAG boundary scan chain related I/O 

input TCK, TRSTN, TDI, TMS 
output TDO 

Note the big-endian labeling convention. The reset signal is an asserted-high synchronous reset. 
The EMAA input is a signal for fine-tune adjustment of the latency of the SRAM used for the 
instruction cache.  The default value for this input is 0 (GND). For details, refer to the ARM memory 
compiler datasheets.  

 It should also be noted that every access through the memory interface is a 256-bit wide word that 
is serialized into a burst of eight 32-bit word transfers. The edram_bw signals are word write 
enable signals for the memory interface, where each edram_bw signal corresponds to a 32-bit word 
of the 256-bit wide word transfer.    For detailed cycle-level timing information of the memory 
interface, refer to the companion representative test vector files. 
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3. TEST ARTICLE PINOUT 

The table below lists the pad-to-signal assignment for the test article die as well as the pin-to-
signal assignment for test articles that are bonded in PGA132M packages. Pad numbering is 
consistent with the MOSIS convention for this package; namely, pad 1 is the rightmost pad on the 
top edge of the chip, and numbering proceeds counter-clockwise. For more detail on this PGA132M 
package and bonding diagram numbering conventions, refer to documentation found at 
http://www.mosis.com/Technical/Packaging/Ceramic/menu-pkg-ceramic.html. 

Pad Number / 
Bonding Finger Pin Signal Name

Signal 
Type

Pad Number / 
Bonding Finger Pin Signal Name

Signal 
Type

Pad Number / 
Bonding Finger Pin Signal Name

Signal 
Type

1 C3 padVDD 2.5V 45 N6 Scan_O O 89 E14 edram_di_3 O
2 B1 padVSS GND 46 P6 Scan_I I 90 D14 edram_di_2 O
3 C2 edram_do_31 I 47 P7 Scan_E I 91 E13 edram_di_1 O
4 D3 edram_do_30 I 48 N7 EMAA I 92 C14 edram_di_0 O
5 C1 edram_do_29 I 49 M7 clk I 93 D13 edram_bw_7 O
6 D2 edram_do_28 I 50 M8 reset I 94 E12 padVDD 2.5V
7 D1 edram_do_27 I 51 N8 padVDD 2.5V 95 B14 padVSS GND
8 E3 edram_do_26 I 52 P8 padVSS GND 96 C13 edram_bw_6 O
9 E2 edram_do_25 I 53 P9 edram_di_31 O 97 D12 edram_bw_5 O
10 E1 edram_do_24 I 54 N9 edram_di_30 O 98 A14 edram_bw_4 O
11 F3 edram_do_23 I 55 M9 edram_di_29 O 99 B13 edram_bw_3 O
12 F2 edram_do_22 I 56 P10 edram_di_28 O 100 C12 edram_bw_2 O
13 F1 edram_do_21 I 57 P11 edram_di_27 O 101 A13 edram_bw_1 O
14 G1 edram_do_20 I 58 N10 edram_di_26 O 102 B12 edram_bw_0 O
15 G2 edram_do_19 I 59 P12 edram_di_25 O 103 C11 edram_addr_14 O
16 G3 coreVDD 1.0V 60 N11 edram_di_24 O 104 A12 padVDD 2.5V
17 H3 coreVSS GND 61 M10 padVDD 2.5V 105 B11 padVSS GND
18 H2 edram_do_18 I 62 P13 padVSS GND 106 A11 edram_addr_15 O
19 H1 edram_do_17 I 63 N12 edram_di_23 O 107 C10 edram_addr_13 O
20 J1 edram_do_16 I 64 M11 edram_di_22 O 108 B10 edram_addr_12 O
21 J2 edram_do_15 I 65 P14 edram_di_21 O 109 A10 edram_addr_11 O
22 J3 edram_do_14 I 66 N13 edram_di_20 O 110 C9 edram_addr_10 O
23 K1 edram_do_13 I 67 M12 edram_di_19 O 111 B9 edram_addr_9 O
24 L1 edram_do_12 I 68 N14 edram_di_18 O 112 A9 edram_addr_8 O
25 K2 edram_do_11 I 69 M13 edram_di_17 O 113 A8 padVDD 2.5V
26 M1 edram_do_10 I 70 L12 edram_di_16 O 114 B8 padVSS GND
27 L2 edram_do_9 I 71 M14 padVDD 2.5V 115 C8 edram_addr_7 O
28 K3 edram_do_8 I 72 L13 padVSS GND 116 C7 edram_addr_6 O
29 N1 edram_do_7 I 73 L14 edram_di_15 O 117 B7 edram_addr_5 O
30 M2 edram_do_6 I 74 K12 edram_di_14 O 118 A7 edram_addr_4 O
31 L3 edram_do_5 I 75 K13 edram_di_13 O 119 A6 edram_addr_3 O
32 P1 padVDD 2.5V 76 K14 edram_di_12 O 120 B6 edram_addr_2 O
33 N2 padVSS GND 77 J12 edram_di_11 O 121 C6 edram_addr_1 O
34 M3 edram_do_4 I 78 J13 edram_di_10 O 122 A5 edram_addr_0 O
35 P2 edram_do_3 I 79 J14 edram_di_9 O 123 A4 spare NC
36 N3 edram_do_2 I 80 H14 edram_di_8 O 124 B5 TDO O
37 M4 edram_do_1 I 81 H13 padVDD 2.5V 125 A3 coreVDD 1.0V
38 P3 padVDD 2.5V 82 H12 padVSS GND 126 B4 coreVSS GND
39 N4 padVSS GND 83 G12 coreVDD 1.0V 127 C5 padVDD 2.5V
40 P4 coreVDD 1.0V 84 G13 coreVSS GND 128 A2 padVSS GND
41 M5 coreVSS GND 85 G14 edram_di_7 O 129 B3 TDI I
42 N5 edram_do_0 I 86 F14 edram_di_6 O 130 C4 TMS I
43 P5 edram_write_enable_n O 87 F13 edram_di_5 O 131 A1 TRSTN I
44 M6 edram_read_enable_n O 88 F12 edram_di_4 O 132 B2 TCK I  
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4. ELECTRICAL AND TIMING INFORMATION 

As shown in the pinout of the previous section, the IRIS Phase 2 digital test article nominally 
uses a core Vdd of 1.0V and a pad Vdd of 2.5V.  Output pad drivers are rated at 9mA; thus, capacitive 
loading should be limited to around 10pF for reasonable slew rates on the output signals that will 
allow achieving the propagation delays shown below. 

All timing information below is based on testing across a range of core voltages from 0.9V to 
1.1V, I/O voltages from 2.25V to 2.75V, and temperatures from 0°C to 105°C. For these conditions, a 
clock period of 7.2ns was achieved in all cases. For simplicity, all inputs have been grouped 
together.  While set-up times and hold times vary among inputs, the values listed below represent 
the worst-case values needed for correct operation.   

CLK

stableinputs

outputs values

tsu th tpdseq

 

Parameter Value 

tsu 2.5ns (min) 

th 1ns (min) 

tpdseq 5ns (min_bc)* ; 9.6ns (min_wc)* 

More detailed electrical and timing information may be added with program approval. 

*  Depending on tester loads and testing conditions (bc=best case: Vcore=1.1V, Vpad=2.75V, 
temperature = 0°C; wc=worst case: Vcore=0.9V, Vpad=2.25V, temperature = 105°C), input 
transition and output sampling times relative to the clock edge may require adjustment; however, a 
clock period of 7.2ns should be achievable in all cases.  For tpdseq values exceeding a clock period, 
this indicates that the propagation delay for a specific output value corresponding to a particular 
clk cycle, as depicted in vcd test vector files, causes the output to not become valid until a following 
clk cycle; however, the chip will still run at the stated clock period but with outputs offset from 
their triggering clk edges by the stated tpdseq values. Also, for output signal sampling at higher 
frequencies, some signal termination and VOH/VOL tuning may be necessary.  For example, we 
found that terminating outputs through 50Ω into 0V and using VOH=VOL=0.6V provided best 
results on a Credence D10 tester. 
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5. PHYSICAL CHIP DIMENSIONS AND CORE LOCATION 

The design submitted for fabrication was prepared with version V2.2.0.2IBM of the IBM 9SF 
PDK using the IBM 6_02_00_00_LB digital stack (for more info on this technology, refer to 
http://www.mosis.com/ibm/9sf/; note that the PDK DRC files may refer to this stack as 
9SF_6_02_00). The design as submitted measured 2.75mm x 2.75mm; however, with the inclusion 
of scribe lanes and other margins (for examples, refer to 
http://www.mosis.com/pages/products/assembly/index#die-size), the fabricated die size may be 
somewhat larger. The fiducial provided by IBM contains marking identifiers in the lower left and 
upper right corners of the die and was included in the design file.    Refer to the figure below, which 
shows relative locations of fiducial markings and the ITAGR1 chip core.  The chip core, inside the 
pad ring, is roughly 1.57 µm  x 1.49 µm. The table below provides x-y coordinate information for 
the points denoted in the figure. Note that each character in the fiducial lettering is comprised of 
multiple polygons.  

ITAGR1
Core

1234A
1234A

IBM

Upper pattern in metal1
Lower pattern in poly

IBM logo in metal1

 

FIGURE 3 DEPICTION OF ITAGR1 DIE ORGANIZATION (NOT TO SCALE) 

 

Point of Interest 
Coordinates (µm) 

x y 

Lower left corner of lower left polygon of 
the “1” in the metal1 “1234A” fiducial 2608.675 2637.675 

Lower left corner of lower left polygon of 
the “1” in the polysilicon “1234A” fiducial 2608.675 2608.675 

Upper right corner of upper right polygon 
of the “M” in the “IBM” fiducial 141.325 141.325 

Lower left corner of  ITAGR1 core 618.56 632.56 
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Overview:

Chapter 1 - Overview

1.0.1. Block Diagram TheTA2_SW node RISC processor executes threads (as opposed to streams) and supports
instructions and 32-bit addresses. A block diagram is shown in Figure 2. There are two inte
sequential operations on 32-bit integer operands and a floating-pointdatapath that perform
point operands. Additionally, the execution unit controls an external arithmetic cluster as a
operations on 256-bit operands. This external wide datapath is a morphable unit that can o
under control of the RISC processor as a wide threaded processor. All datapaths execute fro
of a single 5-stage pipeline. The instruction set has been designed so that datapaths can, for
tion codes, generating a large functional overlap. Each datapath has its own independent re
transfers between register files without going through memor .

The combination of the execution control pipeline, scalar datapath, and floating-poin datap
cessor and may be programmed as such. This capability is essential to an evolutionary softwa
little effort, exploit coarse-grain parallelism by simply programming multiple nodes in a conv
fine-grain parallelism by using the xternal arithmetic cluster as a wide datapath.

In addition to the execution unit and datapaths, eachTA2_SW RISC processor includes other
is used to keep instruction accesses to the memory macro from interfering with data accesse
translation unit (ATU) for converting virtual to physical addresses is also incorporated into

Pipeline Executio
Control Unit

Floating-Point Data
(Register file, FP AL

Multiplier/Divider, 

Instruction
Cache

Scalar Datapath
(Register File, ALU,

Figure 1: TA2_SW RISC Processor Architec
Data
Address/Control

Address
Translation

Unit

Control interface to arithm

Node Bus
Interface
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1.0.2
and E

ard 5-stage pipeline, with the following
(5) register writeback. There are a num-
for multiplies and divides; (2) register
which stall the pipeline due to multiple
the incorporation of register forwarding.
structions by the compiler.

d user level processing, augmented with
e used for addressing operations, as

1.0.3
Data

target applications are mostly from the
r area-performance solution, operations
s a denormalized number, an underflow
ption flag on division operations is not
ons are necessary to correct this. Other
ccurately generated as specified by the

er scalar datapath. Since floating-point
y is larger than that for integer instruc-
an be achieved in most cases as long as
tion is for the divide instruction which

1.0.4 ts aggregated within a row of the local
rs additional opportunity for exploiting
it can perform bit-level operations, such
.

ture. First is the ability to change ALU
jects of eight, sixteen, or thirty-two bits
Us, where the number of ALUs depends
ganize wide register operands. Third, it
tate of local and neighboring condition
ide datapath can be used to accelerate

1.0.5 th to reduce the frequency of requests to
truction cache is direct mapped, and the
ions, which are not expected to be mod-
cache lines coherent with memory. To
view:

. Scalar Datapath
xecution Pipeline

The execution pipeline is shared between the scalar, floating-point and wide datapaths. It is a stand
stages: (1) instruction fetch; (2) instruction decode and register read; (3) execute; (4) memory; and,
ber of events which cause pipeline hazards, for example: (1) long instruction sequences, such as
operations, involving data dependences between nearby instructions; and, (3) memory operations,
cycles latency to memory. The second class of hazards usually incur no extra latency penalty due to
Other hazards can only be resolved through pipeline stalls or avoided through careful ordering of in

The scalar datapath is for the most part a standard RISC architecture that supports both supervisor an
a fewTA2_SW-specific functions for coordinating with the wide datapath. Scalar register values ar
well as for controlling subfield operations

. Floating-Point
path

The floating-poin (FP) datapath implements a subset of the IEEE-754 floating-poin standard. Since
embedded signal processing realm, only single-precision numbers are supported. To achieve a bette
on denormalized numbers are not supported and cause exceptions. In addition, whenever a result i
exception is raised and the minimum normalized number is produced for output. The inexact exce
IEEE-754 compliant, which is common for multiplicative division algorithms. Additional operati
exception flags – Invalid, Divide by Zero, Overflow, Underflow and Inexact (except divide) – are a
IEEE-754 standard. All four rounding modes are implemented.

The floating-point datapath is under control of the same execution pipeline that controls the integ
operations require multiple execution cycles in the execute stage, FP instruction completion latenc
tions. However, since the FP datapath is pipelined, a throughput of one instruction per clock cycle c
there are no data dependences between co-existing instructions in the FP pipeline. The only excep
reuses FP pipeline stages during its execution.

. Wide Datapath When controlled by the RISC processor as a wide datapath, the arithmetic cluster processes objec
memory array by operating on 256 bits in a single processor cycle. This fine-grain parallelism offe
increased processor-memory bandwidth available in an embedded DRAM design. The WideWord un
as simple pattern matching, or higher-order computations such as searches and reduction operations

The WideWord datapath has several features to distinguish it from a conventional SIMD architec
operand width on a per-instruction basis, enabling it to treat a 256-bit value as a packed array of ob
in size. This characteristic means the WideWord ALU is more accurately represented as parallel AL
on the operand size. Second, a permutation network enables applications to rapidly align and reor
supports selective execution of instructions on sub-fields within a WideWord, depending on the s
codes. Fourth, even for applications where the WideWord ALU operations are not applicable, the w
memory access time and communication.

. Instruction Cache A small instruction cache is included to avoid instruction accesses interfering with data requests, bo
memory and to maximize the opportunity for faster page mode accesses for the data requests. The ins
size for the initial implementation is 4Kbytes with 32byte cache lines. Because it caches just instruct
ified during program execution, there is no write back facility or other mechanisms for keeping
support context switching, an invalidate instruction permits invalidation of individual cache lines.
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e the translation. Therefore, a node must main-
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s a modest hardware requirement, exporting
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Overview: Other Features

1.0.6. Address Translation The address translation scheme employed byTA2_SW uses segments, each of which is def
cal base address and limit. The local memory region is partitioned into eight segments at fi
user code and data/stack, and for kernel and user communication buffers. A small number
global segments must be able to map portions of a shared virtual address space much larger t
global segments must be represented by both a virtual and physical base address register. De
to support the TA2_SW node interconnect specification

Remote addresses are translated via the concept of a home node, which is guaranteed to hav
tain translation information for only eight local segments plus a small number of segments fo
any remote data for which it is the home node. The major advantages of this approach are th
translation information on each node scales well.

1.1. Other Features

1.1.1. Exceptions Exceptions, arising from execution of node instructions, and interrupts, from other sources su
nal, are handled by a common mechanism. The exception handling scheme forTA2_SW ha
much of the complexity to software, to maintain a fl xible implementation platform. It provi
ware and software exception sources. Additionally, it provides a flexible priority assignmen
that exception recognition is disabled. While the hardware design supports traditional stack-b
recursive dispatching scheme which uses hardware features to allow preemption of lower-
which should be easier to debug.

The remainder of this document is organized as follows. Chapter 2 describes the registers an
cessor. Chapter 3 gives an overview of the instruction set architecture (ISA) followed by a
datapath in Chapter 4. X presents an overview of the floating-poin datapath, while Chapter 6
of the arithmetic cluster when controlled by the RISC processor as a wide datapath. Finally, C
descriptions of the instruction cache, address translation, and exceptions, respectively.
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2.1. these registers. The scalar, floating
ating-point or wide datapath, arithmetic
ween register file is accomplished with
store instructions only. Memory opera-
2-bit, 32-bit, and 256-bit boundaries,

n either user mode or supervisor mode.
sters may be accessed only in supervisor
rd RISC systems. The wide datapath, in
f the register. The condition codes have
tructions have been added to the ISA to
s the ability to select an individual sub-
e the selected field in an explicit move

few special-purpose registers in the sys-
lso, an environment identifie (EID)

2.2. 
Nod

This section describes each type of
special-purpose registers, distinguishing
mode field of the program status word
describes the classificatio of each reg-

the user-level special-purpose registers,

Figure 4. This register fil is used as the
e addresses for memory accesses to sca-
field in a wide register during transfers
to load and store objects to/from a gen-
tic operations where the immediate 0 is
sters and Data Types: Introduction

Chapter 2 - Registers and Data Types

Introduction This chapter describesTA2_SW’s different registers and their usages, and how data is represented in
point, and wide datapaths each have their own register file Whether an instruction uses the scalar, flo
operations generally follow a 3-register format, with two sources and one destination. Transfers bet
explicit move instructions. Data is transferred between memory and registers with explicit load and
tions involving scalar, floating-point, and wide registers refer to memory locations aligned at 3
respectively.

The general-purpose registers, including scalar integer, floating-point, and wide, can be accessed i
Some special-purpose registers can be accessed in user mode, but all remaining special-purpose regi
mode. For the most part, the registers in the scalar integer and floating-poin datapaths follow standa
contrast, has several novel types of registers to facilitate selective execution on specific subfields o
been extended on the wide datapath to maintain a result for each separate data field and branch ins
simultaneously check the conditions on all data fields. Another novel feature of the wide datapath i
field of the wide register, using either an immediate or a scalar general-purpose register, and mov
instruction.

Beyond the standard supervisor-level registers required for interrupts, exceptions and protection, a
tem supportTA2_SW-specifi activities. Segment registers are used to support address translation. A
identifies the currently act ve user program, for protection purposes.

Description of
e Registers

The registers for aTA2_SW node are summarized in Table 1 and graphically displayed in Figure 4.
register in detail. In the classificatio below, we firs describe the general-purpose registers, then the
between supervisor-level registers and user-level registers. Access privileges are described by the
(PSW) register. This organization is also reflecte in Table 1and Figure 4. In Table 1, the “type” fiel
ister. Type scalar, floating-point,and WideWordrefer to the general-purpose registers, SPindicates
AT refers to the address translation registers, and P refers to all other privileged registers.

This section describes the general-purpose scalar and wide registers that are accessible to user code.

2.2.0.1. General-Purpose Scalar Registers
There are 32 general-purpose scalar registers, each 32-bits wide, which we designate as R0-R31 in
source or destination for all integer scalar instructions. In addition, scalar registers are used to provid
lar and wide load/store instructions. Further, scalar general-purpose registers can be used to index sub
between register file using the MVSWI and MVWSI instructions (see below). Memory operations
eral-purpose scalar register are aligned at 32-bit boundaries. For convenience in performing arithme
one of the operands, R0 is hardwired to hold the value 0.
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ich we designate as FR0-FR31 in Figure 4. This
ting-point register values can be transferred to/
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ata and 16 bits of token, which we designate as
structions. Wide instructions perform the same
W) field of the instruction (Future implementa-
ty.) The mask register and participation mode
e in an instruction, if the participation (PP) fiel

of token information, 2 bits for each 32 bits of
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The rationale for including tokens in the Wide-

emory, and it is desirable for the tokens of the
the tokens associated with the operand specifie
uction. However, someTA2_SW implemen-
implement the full token capability, tokens are
e participation effect masks off all data field of

calar registers. Memory operations to load/store
l field of wide word registers can also be set or
te index to specify the data fiel to be accessed.
permutation instructions WPRM and WPRMI,
instruction uses a third wide register to specify

oded permutation patterns

rogram, each described in this section.

rs for wide condition codes

ide ALU

s user-level access to any special-purpose regis-
Registers and Data Types: Description of Node Registers

2.2.0.2. Floating-Point Registers
There are 32 general-purpose single-precision floating-poin registers, each 32-bits wide, wh
register fil is used as the source or destination for all scalar floating-poin instructions. Floa
from scalar or wide datapaths via special transfer instructions (see ISA manual for details).
from a general-purpose floating-point r gister are aligned at 32-bit boundaries.

2.2.0.3. General-Purpose Wide Registers
There are 32 general-purpose wide registers, each 272-bits wide representing 256 bits of d
WR0-WR31 in Figure 4. This register file is used as the source or destination of all wide in
operation on 8-, 16-, or 32-bit subfields of the wide register, as designated by the width (W
tions may also support 64-bit subfields for wide double-precision floating point capabili
register (described below) can optionally be used to designate which subfield will participat
of the instruction is set.

Each entry of the WideWord register file contains not only 256 bits of data, but also 16 bits
data, as is consistent with the association of tokens and data in theTA2_SW streaming op
when configured for streaming mode (refer to the specification for the arithmetic cluster).
Word datapath is that the WideWord unit may be involved in processing streams stored in m
stream to be preserved for future streaming operations. To support this capability, nominally
by wrA are written to the token fiel of the operand specifie by wrD in any WideWord instr
tations may ensure token compliance for only WLD and WST instructions. For designs that
not subject to selective execution. That is, the tokens of wrA will be written to wrD even if th
wrD.

Wide registers are loaded from/stored to memory using addresses from the general-purpose s
objects to/from a general-purpose wide register are aligned at 256-bit boundaries. Individua
read using MVSW, MVWS, MVSWI and MVWSI instructions that use a register or immedia
In addition to arithmetic and transfer operations, wide registers can be updated through the
which reorganize the data field of the source register into a destination register. The former
how the data fields will be rearranged, and the latter performs a lookup into a table of hardc

2.2.1. User-Level Special-
Purpose Registers

A large number of special-purpose registers are directly or indirectly accessible to the user p

• A single condition register for scalar condition codes, and a set of f ve condition registe
• Scratch registers for scalar integer multiply and divide
• A participation mode register and mask register to support selective execution on the w

In addition to being read/written indirectly by other ALU operations, the architecture permit
ter through explicit moves to standard registers, using the MTSPR and MFSPR instructions.
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sters and Data Types: Description of Node Registers

2.2.1.1. Scalar Condition Register
The scalar condition code register, CC in Figure 4, consists of 5 bits. The firs three bits of CC are set
to zero; the other two bits have slightly more peculiar semantics. The condition codes have the CC
Figure 2. Note that LT, GT, EQ, and CA condition codes are updated only if the current instruction h
OV condition code is updated for any scalar add or subtract operation, regardless of the condition c
is, it is only cleared when the condition code register is read. They are accessed in conditional bran
user-level special-purpose registers, they can be explicitly read and written with the MFSPR and M
accessed with these instructions, the 5-bit CC value is right-justified to the least significant bits of th

Figure 2: Scalar Condition Code Register

2.2.1.2. Wide Condition Registers
While the scalar codes are consolidated into a single condition register, the CC described above, ea
allocated an entire register so the results of parallel operations on objects as small as bytes may be re
isters is 32 bits wide. Thus, wide condition registers are designated as LT, GT, EQ, OV, and CA. Fo
registers are used, a bit of the WideWord LT register is set if the result of its corresponding 8-bit data
tleties due to the configurabilit of the operand sizes. For example, if a WideWord instruction specif
bit values, the condition codes are grouped into eight groups of 4, where each bit of a group is upda
dition for the group’s corresponding 32-bit result. Like the scalar CC register, the LT, GT, EQ, and C
by instructions that have their C fiel enabled. The OV register is a sticky register that is updated o
tions; bits of this register are cleared only when the register is read using an MFSPR instruction.

The wide condition codes are accessed by the branch instructions BAx and BNx, which represent Br
ditions for the appropriate wide condition register represented by x.

Condition Code CC bit Description
LT 0 This bit is set when the result represents a number stri
GT 1 This bit is set when the result represents a number stri
EQ 2 This bit is set when the result represents a number equ
OV 3 This bit is set to indicate overfl w has occurred during

subtract instruction. This bit is not altered by any othe
tice, the OV bit is set if the carry out of bit 0 is not equ
bit 1 (assuming big Endian bit labeling).

CA 4 In general, the carry bit (CA) is set to indicate that a c
occurred during execution of an add or subtract instru
altered by any other instructions.
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ose register 15) may be updated to reflec excep-
nged in groups of 4 status conditions for each of
: invalid (IV), inexact (IX), overflow (OV), and
ce set, they remain set until FPSR is read via an

ar integer multiply or divide. HI holds the most
nificant 32 bits of a multiplication result or the

ctive execution of a wide instruction that has its
as will be discussed in Chapter 6). The PM reg-
instructions, the 5-bit PM value is right-justifie
select the Mask Register (M) for participation

4. If the PP fiel of a wide instruction is set, and
fiel that has its corresponding bit in the M reg-

bits, multiple bits in the M register will be set
M register automatically causes the M bit of the

ion of virtual addresses to physical addresses by
slation process can be found in Chapter 8. The
a context switch or a change in the size or loca-
nly, directly by address translation hardware.

31
IX7 OV7UD7

ment
Registers and Data Types: Description of Node Registers

2.2.1.3. WideWord Floating-Point Status Register
Similar to condition codes, the WideWord floating-poin status register (FPSR - special-purp
tion conditions for WideWord floating-poin operations. This register is a 32-bit register arra
the eight 32-bit floating-point units in the WideWord datapath. The 4 status conditions are
underfl w (UD). Refer to the IEEE-754 standard for details. All bits of FPSR are sticky; on
MFSPR instruction. The bit arrangement for FPSR is shown below.

2.2.1.4. Scratch registers for integer multiplies and divides
Two registers, designated HI and LO in Figure 4, are automatically set as the result of a scal
significant 32 bits of a multiplication result or the quotient of a division. LO has the least sig
remainder of a division.

2.2.1.5. Participation Mode Register
The Participation Mode (PM) register is a 5-bit register that describes the conditions for sele
PP fiel set. The conditions correspond to the four condition codes or the mask register M (
ister is read/written using the MFSPR and MTSPRinstructions. When accessed with these
to the least significant bits of the 32-bit integer datapath. It is also updated automatically to
when M is updated.

2.2.1.6. Mask Register
The mask register is a 32-bit register used in participation, which we refer to as M in Figure
the M bit of the PM register is set, then the instruction is conditionally executed on each data
ister set. Like the WideWord condition codes, if the width of each field is larger than 8
corresponding to a single data fiel (2 for 16-bit widths, 4 for 32-bit widths). Update of the
PM register to be set.

2.2.2. Supervisor-Level
Address Translation
Registers

A total of 28 32-bit registers related to local and global segments are used to perform translat
the node processor. A detailed description of how these registers are used in the address tran
registers are set by supervisor-level software using MTPR instructions, usually as a result of
tion of current global segments. They are read either by MFPR instructions, or more commo

IV7
0

IV0 IX0 OV0UD0 IV1 IX1 OV1UD1

Figure 3:TA2_SW RISC FPSR Bit Arrange
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ible to other nodes. There are eight local
SB7) hold the physical base address of
e base, for address bounds checking, as

es. There are four global segments, and
hared virtual address space much larger
egment Physical Base registers (GPB0-
). Usages of the Global Segment Limit

2.2.3
Leve

hese can be classifie into the following

some other instruction, all of the regis-
R and MTPR. There are two exceptions
visor-level code; for this reason, it is not
in software only indirectly through the
FPR; MTPR to the ESW is undefined

ious activities. The goal of having these
switching between the kernel and user-

nto SR0-SR3, then use the general-pur-
more costly memory accesses.

h user code causes the PC register to be
in the program (i.e., branches, procedure

or a CALL instruction, the current PC is
nt RET instruction will cause R31 to be
sters and Data Types: Description of Node Registers

A set of 16 registers support local segments, referring to addresses local to the node that are inaccess
segments, with two registers representing each segment. The Local Segment Base registers (SB0-
each local segment. The Local Segment Limit registers (SL0-SL7) hold the maximum offset from th
well as some additional bits to support access protection.

A set of 12 registers support global segments, referring to addresses that may be shared across nod
each is supported by three separate registers. Global segments must be able to map portions of a s
than the physical memory of an individual node. For this reason, global segments have both Global S
GPB3), similar to local segments, as well as Global Segment Virtual Base Registers (GVB0-GVB3
registers (GL0-GL3) are analogous to the SL0-SL7 registers for local segments.

. Other Supervisor-
l Registers

A number of other supervisor-level registers are included to support the run-time kernel activities. T
categories:

• Scratch registers
• The program counter
• The processor status word
• The environment identifie
• Timer registers, including two to hold current system clock and one used as a countdown timer
• Registers to support interrupts and exceptions, a total of seven

While in some cases these registers are updated as a result of a hardware event or upon execution of
ters can be read from/written to general-purpose registers by the supervisor-level instructions MFP
to this. The Program Counter is set only by hardware, and cannot be accessed directly, even by super
given a register class in Table 1. Also, bits of the Exception Source Word (ESW) are set or cleared
Exception Set Register and the Exception Reset Register, respectively, although it can be read by M
and is treated as a no-op by the hardware.

2.2.3.1. Scratch registers
Four 32-bit scratch registers, designated SCR0-SCR3 in Figure 4, are used by the kernel for its var
additional registers is to avoid the need to save and restore context of general-purpose registers when
level code. The kernel can instead copy the contents of up to four of the general-purpose registers i
pose registers, and subsequently restore the contents of the general-purpose registers, thus avoiding 

2.2.3.2. Program counter
The program counter (PC) maintains the address to the current instruction to be executed. Althoug
updated, it is updated indirectly through the execution of instructions that change the fl w of control
calls and interrupts and exceptions).

Upon execution of a branch instruction, the PC is updated by hardware to the target of the branch. F
copied into SR31, and then the PC is updated to the starting point of the called function. A subseque
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the FADR register (see description below), and

nd its operation is given in Chapter 9.

munication between nodes. The EID register is
e 16-bit EID value is right-justifie to the least

he real-time clock. The real-time clock provides
ion of RCL and RCH may be viewed as a load-
when reset is released. The real-time clock is

z for implementations over the life of this archi-
to 5ns resolution, respectively. RCH and RCL

read using the MFPR instruction.

g an interrupt after a programmable delay. The
auses an exception (subject to masking) when it
ntion. The interval is set by loading the TIMER
MER returns to the interval value the next cycle

xceptions. A detailed description of their usage

t or exception. The MADR and FADR registers
an exception. If the cause of the exception was
executed. The NADR holds the address of the
recovering from exceptions that occur while

a hardware exception, or by MTPR instructions
lues of FADR and SSW, respectively, on execu-

(EMR), the Exception Source Word (ESW), the
dicates which exceptions are currently enabled,
e event of a hardware exception, or by software
Registers and Data Types: Description of Node Registers

copied back to PC. On an interrupt or exception, the current PC is automatically copied into
is restored from FADR upon execution of a RFE instruction.

2.2.3.3. Processor status word
The processor status word is shown as PSW in Table 8. A detailed description of the PSW a

2.2.3.4. Environment identifie
A 16-bit EID register records the currently active user context, and it is used to support com
set by the kernel upon context switch. When accessed with MTPR or MFPR instructions, th
significant bits of the 32-bit int ger datapath.

2.2.3.5. Timer registers
Two 32-bit registers, RCL and RCH, hold the low-order and high-order bits, respectively, of t
a high-resolution measure of real time for indicating the time of day and date. The combinat
able 64-bit counter. At reset, the value of RCH and RCL are all 0s and begin incrementing
clocked by the CPU clock. Considering a probable CPU frequency range of 200MHz to 1GH
tecture, the real-time clock will provide ranges of approximately 117 to 585 years at a 1ns
values may be initialized to desired values through the use of the MTPR instruction and are 

The TIMER register is a 32-bit decrementing counter that provides a mechanism for causin
frequency of the TIMER decrement is the same as the CPU clock frequency. The TIMER c
reaches 0 and begins immediately to count down the next interval without processor interve
register with the interval value by initially using an MTPR instruction. Subsequently, the TI
after counting down to a 0 value.

2.2.3.6. Registers to support interrupts and exceptions
There are eight 32-bit registers, shown in Figure 4, that are used to support interrupts and e
can be found in Chapter 9.

The Stored PSW register (SSW) holds the value of the PSW immediately prior to the interrup
hold the address of the faulting memory address and/or faulting instruction, in the event of
just a normal timer-initiated interrupt, the FADR register will hold the next instruction to be
instruction that was issued after that pointed to by the FADR. This value is useful when
branches are in the pipeline. All of these registers are set either by hardware in the event of
at the beginning of a software exception. The PC and PSW registers are restored with the va
tion of a RFE instruction.

The four additional registers to support exceptions are the Exception Enable Mask register
Exception Set register (ESR) and the Exception Reset register (ERR). The EMR register in
and is set by the supervisor. Fields of the ESW are set to 1 either directly by hardware in th
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to 0 by software setting corresponding
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dress translation
dress translation
d for address translation
ddress translation
sed for address translation

ing

g

andling

tion handling
sters and Data Types: Description of Node Registers

setting corresponding bits in the ESR register for software exceptions. Bits of the ESW are cleared
bits in the ERR register. A description of the bit fields and their meaning can be found in Chapter 9

TABLE 1. Summary of registers

NAME Type Number Width DESCRIPTIO
R0-R31 scalar 0 - 31 32 General-purpose scalar integer registers
FR0-FR31 floating-poin 0 - 31 32 General-purpose scalar floating-point r gister
WR0-WR31 WideWord 0 - 31 272 General-purpose WideWord registers (256-bi
CC SP 0 5 LT, GT, EQ, OV, and CA bits of scalar proces
HI SP 1 32 most significant 32 bits of multiplication resu
LO SP 2 32 least significant 32 bits of multiplication resu
LT SP 8 32 Less Than condition code register of WideWo
GT SP 9 32 Greater Than condition code register of Wide
EQ SP 10 32 Equal condition code register of WideWord U
CA SP 11 32 Carry condition code register of WideWord U
OV SP 12 32 Overfl w condition code register of WideWor
M SP 13 32 WideWord Mask register used in selective exe
PM SP 14 5 WideWord Participation Mode register used i
FPSR SP 15 32 WideWord floating-point status r gister
SB0-SB7 AT 0 - 7 32 Base registers for local segments, used for ad
SL0-SL7 AT 8 - 15 32 Limit registers for local segments, used for ad
GVB0-GVB3 AT 16 - 19 32 Virtual base registers for global segments, use
GL0-GL3 AT 20 - 23 32 Limit registers for global segments, used for a
GPB0-GPB3 AT 24 - 27 32 Physical base registers for global segments, u
PSW P 0 32 Processor status word
SSW P 1 32 Stored value of PSW, used in exception handl
EID P 2 16 Environment identifie
FADR P 3 32 Stored value of PC, used in exception handlin
SCR0-SCR3 P 4 - 7 32 Supervisor-level scratch registers
ESW P 8 32 Exception source word
EMR P 9 32 Exception mask register
ESR P 10 32 Exception set register
ERR P 11 32 Exception reset register
MADR P 12 32 Faulting memory address, used in exception h
TIMER P 13 32 Timer for programmable delay interrupts
RCL P 14 32 Low-order bits of real-time clock
RCH P 15 32 High-order bits of real-time clock
NADR P 16 32 Stored value of PC after FADR, used in excep
PC NA NA 32 Program counter
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Figure 4: TA2_SW Processor Registers

General-Purpose
      Registers

SR0

SR31 WR31

Scalar Registers

LT
GT
EQ
OV
CA

CC

LO

HI

   User-Level
Special-Purpose
      Registers

User-Level Registers

GVB0

GVB3

SL0

SL7

SB0

SB7

   Address
Translation
    Registers

Local Segment Registers Global Segm

E
E
E
E

TIMER
RCL
RCH

PC

PSW

EID

SCR0

SCR3

Supervisor-Level Special-Purpose Registers

Supervisor-Level Registers

FP Registers
FR0

FR31

F

WR0



Regi  Page 14 of 56

2.3. 
Con

nteger and floating-poin datapaths, and
ast significan bits in the address should
r ideWord datapath).
sters and Data Types: Operand Conventions

Operand
ventions

As stated earlier, memory operations are assumed to be aligned at 32-bit boundaries for the scalar i
256-bit boundaries for the wide datapath. Thus, on memory operations, the appropriate number of le
be 0 (2 least significant bits for scalar int ger and floating-point datapaths, least 5 significant bits fo

Following the convention of the PowerPC, bits and bytes are stored in BigEndian order in memory.
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C Processor Instruction Set Manual. An
SW scalar instruction uses a three-operand

cal instructions using this format, there is also a
indicates signed/unsigned arithmetic for multi-
n. In lieu of a second source register, a 16-bit

t) Register Operations

erations

relative or calculated using a base register ORed
must be on a 4-byte boundary. Furthermore, the
referred to as a call instruction. Also, the CCC
or equal, greater than, greater than or equal, or
struction Set Manual for details.

function

4 bits 6 bits

16 bits

immediate
ISA Summary: Scalar Instruction Formats

Chapter 3 - ISA Summary

3.1. Scalar
Instruction Formats

Details of theTA2_SW instruction set architecture (ISA) can be found in theTA2_SW RIS
overview summary is provided in this section for reference. As shown in Figure 5, theTA2_
format to specify two 32-bit source registers and a 32-bit target register. For arithmetic/logi
C bit to indicate whether the current instruction updates condition codes. However, the C bit
ply/divide instructions, since these instructions never update condition codes by definitio
immediate value may be specified, as sh wn in Figure 6.

Figure 5: Format R for Scalar (Integer and Floating-Poin

Figure 6: Format I for Scalar Immediate Op

The branch instruction formats are shown in Figure 7. The branch target address may be PC-
with an offset. In both formats, the offset is in units of words, or 4 bytes, since instructions
L bit specifie linkage, that is, whether a return instruction address should be saved in R31,
field specifies one of eight branch conditions: always, equal, not equal, less than, less than
overfl w. See the branch and call instruction descriptions in the TA2_SW RISC Processor In

opcode rD rA rB

6 bits 5 bits 5 bits 5 bits

C

opcode rD rA

6 bits 5 bits 5 bits
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3.2. 
Inst

igured for WideWord operations. As
neral form of scalar instructions. Addi-
e execution of the instruction. Figure 9
 FP, and WideWord register files

perations

e Transfers

set

its

function
6 bits

WW
2 bits

function
6 bits

WW
2 bits
Summary: WideWord Instruction Formats

Figure 7: Format B for Branches

WideWord
ruction Formats

TA2_SW WideWord operations are executed in a morphable arithmetic cluster which may be conf
shown in Figure 8, “WideWord Arithmetic/Logical Format,” WideWord instructions follow the ge
tional control information is included to manage the data fields of the WideWord and to modify th
shows the format for transfers within the WideWord register file and across the scalar int ger, scalar

Figure 8: Format W for WideWord Arithmetic/Logical O

Figure 9: Format T for Wide-Word and Inter-Register Fil

The control fields are defined as fol ws:

opcode rA off

6 bits 3 bits 5 bits 16 b

0 L CCC

opcode PC offset

6 bits 3 bits 21 bits

1 L CCC

opcode wrD wrA wrB
6 bits 5 bits 5 bits 5 bits

PP
2 bits

C

opcode rD rA IA/D

6 bits 5 bits 5 bits 5 bits
PP

2 bits
T
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o bits, which primarily affects the shift
the merge instruction, these bits specify

 following table:

t instruction’s execution. However, the C

s performed on a given data field. The
local to its own data fiel is true, only if
s the rightmost fiel with a condition that
M (participation mode) register. Refer to
e:

pending on the function, rD or rA may
nsfer instruction refers to the WideWord
egister.

r. Depending on the function, this index
ither rD or rA depending on the direction

onic

 Mnemonic

a

o

A

A

ISA Summary: WideWord Instruction Formats

WW (width)
The WW field sets the width of the WideWord operands to eight, sixteen, or thirty-tw
operations and the configuratio of the carry chain for additions and subtractions. For
the condition on which the merge is based. The encoding of these bits is listed in the

C (condition code enable)
The C bit indicates whether condition codes will be updated as a result of the curren
bit indicates signed/unsigned arithmetic for multiply, pack, and unpack instructions.

PP (participation)
The PP field interacts with condition codes to control whether a computation i
participation fiel can specify that a data fiel participate always, only if a condition
the data fiel is the leftmost fiel with a condition that is true, or only if the data fiel i
is true. The condition that is inspected for participation depends on the value of the P
Chapter 6 for more details. The encoding of the PP bits is listed in the following tabl

T (type)
The T bit governs whether the current instruction operates on a vector or scalar. De
specify a WideWord register. In this case, the T bit specifies whether the current tra
register as a whole vector or instead uses IA/D to index a sub-field of the ideWord r

IA/D

Value to be used as an index when a sub-fiel of a WideWord is involved in a transfe
fiel may be an immediate or a scalar GPR specifie . Also, IA/D may be coupled with e
of the transfer as specified by the function

WW Value Operand Width Assembler Mnem
00 8 bits b
01 16 bits h
10 32 bits w
11 Reserved NA

PP Value Participation Definitio Assembler
00 Always participate
01 Specified by local conditio
10 Reserved N
11 Reserved N
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 in Table 2.

t
FUNC DESCRIPTION

Branch Instructions
Bx Branch on scalar condition
BAx Branch on all WideWord conditions
BNx Branch on no WideWord condition
CALLx Call on scalar condition
CALLAx Call on all WideWord conditions
CALLNx Call on no WideWord condition

System Instructions
SYS System Call
ICLI Instruction Cache Line Invalidate
RFE Return from Exception
MTATR Move to address translation reg
MFATR Move from address translation reg
MTPR Move to protected reg
MFPR Move from protected reg

FPU Instructions
FABS Floating-point absolute value
FADD Floating-point add
FDIV Floating-point divide
FLD Floating-point load
FMUL Floating-point multiply
FNEG Floating-point negate
FST Floating-point store
FSUB Floating-point subtract
FTI Floating-point to integer conversion
ITF Integer to floating-point co version

Transfer Instructions
MVFF Move FPU to FPU
MVFS Move FPU to scalar
MVFW Move FPU to WW
MVFWI Move FPU to WW, indirect
MVSF Move scalar to FPU
MVSW Move scalar to WW
MVSWI Move scalar to WW, indirect
MVWF Move WW to FPU
MVWFI Move WW to FPU, indirect
MVWS Move WW to scalar
MVWSI Move WW to scalar, indirect
MVWW Move WW to WW
MVWWI Move WW to WW, indirect
ISA Summary: Concise List

3.3. Concise List A concise list of the instructions in the TA2_SW Instruction Set Architecture (ISA) is given
TABLE 2. TA2_SW Instruction Se

FUNC DESCRIPTION FUNC DESCRIPTION
Scalar Instructions WideWord Instructions

ADD Add WADD Add
ADDE Add extended WADDE Add extended
ADDI Add immediate WSUB Subtract
ADDIC Add immediate w/ condition codes WSUBE Subtract extended
SUB Subtract WSUBU Subtract unsigned
SUBE Subtract extended WMULES Multiply even signed
SUBU Subtract unsigned WMULEU Multiply even unsigned
MUL Multiply WMULOS Multiply odd signed
MULU Multiply unsigned WMULOU Multiply odd unsigned
DIV Divide WAND And
DIVU Divide unsigned WNOT Bitwise inversion
AND And WOR Or
ANDI And immediate WXOR Xor
ANDIC And immediate w/ condition codes WSLL Shift left logical
NOT Bitwise inversion WSLLI Shift left logical immediate
OR Or WSRA Shift right arithmetic
ORI Or immediate WSRAI Shift right arithmetic immediate
ORIC Or immediate w/ condition codes WSRL Shift right logical
ORIS Or immediate shifted WSRLI Shift right logical immediate
XOR Xor WLD Load Reg from Mem
XORI Xor immediate WST Store Reg to Mem
XORIC Xor immediate w/ condition codes WFABS Floating-point absolute value
SLL Shift left logical WFADD Floating-point add
SLLI Shift left logical immediate WFMUL Floating-point multiply
SRA Shift right arithmetic WFNEG Floating-point negate
SRAI Shift right arithmetic immediate WFSUB Floating-point subtract
SRL Shift right logical WFTI Floating-point to integer conversion
SRLI Shift right logical immediate WITF Integer to floating-point co version
LD Load Reg from load buffer if possible WPRM Permute
ST Store Reg to store buffer if possible WPRMI Permute immediate
LDBI Load buffer invalidate WMRG Merge based on condition codes
STBF Store buffer flus WPKS Pack using signed arithmetic

WPKU Pack using unsigned arithmetic
Miscellaneous Instructions WUPKL Unpack low-order byte/halfword

MTSPR Move to special-purpose reg
MFSPR Move from special-purpose reg
LOKL Lock Load
LOKS Lock Store
PROBE Probe address to determine locality
ELO Encode leftmost one TKLD Token Load
CLO Clear leftmost one TKST Token Store
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4.1. floating-point and WideWord data-
sor architectures, the operation of these
n explanation of the major events occur-

4.1.1 ed at the next clock edge as the current
stage sees an opcode, two operands, and
each stage is the convention used in all

ruction cache and the instruction
gister stage of the pipeline.

culation applies to sequential addresses

or the most recent value in the
urrent instruction is routed to the

de. For memory operations, the

the normal register-write logic,
arbitration and the required read
on as arbitration grants access to

ther a computation or a memory

4.2. 
Path

Execution pipeline logic is depicted
nd scalar datapath.
ution Pipeline and Scalar Datapath: Introduction

Chapter 4 - Execution Pipeline and Scalar Datapath

Introduction TheTA2_SW execution pipeline is a f ve-stage unit that is used to control the operation of the scalar,
paths. Because the combined pipeline and scalar datapath are quite similar to familiar RISC proces
units are detailed together to simplify description. The stages of the pipeline are named here, with a
ring within that stage of execution.

. Pipeline Stages We establish the convention that each stage views its local instruction and output to be synchroniz
instruction. While from an external view, there are fiveinstructions “currently” executing, the ALU
control and stored state as components of the “current” instruction. This view of execution local to
descriptions of the pipeline.

F - instruction fetch
The F stage of the pipeline is where the address of the current instruction is applied to the inst
is located. At the end of the cycle the output of the instruction cache is latched into the first r

During the F stage, the address for the next instruction is calculated. Note that the cal
as well as branches.

D - register decode
During the D stage, operands for the current instruction are selected from the register file
pipeline forwarding logic. In the case of an immediate instruction, the immediate fiel of the c
SRC2 pipeline. The result is latched into the datapath D-stage registers.

X - execute
Depending on the instruction, the X stage performs the computation defined by the opco
effective address is calculated in the X stage.

M - memory
Register load and store instructions require memory accesses. To maintain consistency with
memory operations are begun during the M cycle, and the pipeline is stalled until memory
operation has been performed. During memory write operations, the pipeline is released as so
the memory.

W - write
During the W stage, the register file is written with the result of the current operation, whe
read.

Major Signal
s

Major data and control paths of theTA2_SW RISC processor are shown in Figure 10 and Figure 11.
in the shaded area of the figures, while the unshaded area of the figures s ws the control pipeline a
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4.2.1. Scalar Data Path

Figure 10: 5-Stage Execution Pipeline (F & 
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Instruction Set Architecture document for a

sign-point for new machines, includingTA2_SW
ranches or other changes in program

address calculation portion of the pipeline has
struction to be executed. Address computations

tions indicated in the figure are: pc_increment,
_SW.
Execution Pipeline and Scalar Datapath: Scalar Computing Functions

4.3. Scalar
Computing
Functions

The scalar datapath performs operations on objects of 32 bits or less. Refer to theTA2_SW
complete description of these operations.

4.4. Pipeline
Analysis

Numerous examples of a five-stage pipeline exist in the literature, providing a starting de
. We perform an analysis of theTA2_SW pipe to ensure no undue overhead is incurred by b
fl w.

4.4.1. Address
Calculations

Figure 12 below is excerpted from the earlier execution pipeline illustration, Figure 10. The
been highlighted to clarify the several parallel paths used to develop the address of the next in
are performed in parallel to guarantee the fastest possible operations. The address calcula
pc_offset, andregister_offset, which correspond to the types of branches supported by TA2
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ed off to a separate compute unit which

turn
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Reg. File
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Addr Tgt
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Register
Write-Back
ution Pipeline and Scalar Datapath: Pipeline Hazards

Figure 12: Instruction-Address Pipeline

. Branch Pipeline
s

As shown in Figure 12, a branch/call instruction incurs one delay slot because the branch cannot b
pipeline. This delay slot is exposed to the compiler to create the opportunity for the compiler to resc
cycle for the delay slot. In the event a code sequence cannot be rescheduled, a NOP instruction ins
needed to ensure proper operation.

Pipeline
ards

In pipelined systems, hazards occur when an operation is begun before another has completed, or
TA2_SW, these are broken down into three classes: instruction sequences, register operations, an
hazard classes is described below.

. Instruction
ences

There are several instances of instructions that incur hazards due to “extra” time required for comple
ger multiply and divide. When these instructions reach the execute stage of the pipeline, they are fork

Register-relative
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ed. The execution pipeline continues processing
are read only after such instructions have com-

pipeline. In the simplest case, consider a stream
to the register file This hazard can be very sim-
e, and performing all register reads during the

ailable to be fetched from the register file This
er stage in the pipeline, and move it to the ALU
ipeline against the register specification access-
ts where several copies of a register are in the

ter load and store instructions. Consider the

instructions as written. First, the pipeline can’t
te stage. Second, there is no guarantee that the
known number of delays will occur before the
Execution Pipeline and Scalar Datapath: Pipeline Hazards

writes its results to the special-purpose HI and LO registers when the computation is complet
concurrently. Thus, software scheduling is necessary to ensure the contents of HI and LO
pleted. Refer to the Instruction Set Manual for more details on such instructions.

4.5.2. Register Operations Register hazards occur when an instruction requires an operand that is currently in the data
of instructions where a register is required in the same clock cycle where it is being written in
ply eliminated by requiring register writes to complete in the first half of each clock cycl
second half. This is well within the capabilities of the technology.

Consider the following code sequence, where an operand is not ready:

ADD R3, R1, R2 /* R3 = R1 + R2 */

ADD R5, R3, R4 /* R5 = R3 + R4 */

Because R3 is emerging from the ALU as the firs instruction finishe execution, it is not av
hazard requires bypassingor forwarding to get the most recent copy of a register from a lat
inputs. Selection is performed by comparing the destination address of every register in the p
ing the register file. The most recent copy (closest to the ALU) is selected, resolving even
pipeline.

4.5.3. Memory Operations Memory-related hazards can occur inTA2_SW. These are caused by the proximity of regis
following code sequence, which is typical of moving data for further processing:

MOV R1, R0 /* initialize the index */

LD R2, TABL1, R1 /* */

ST R2, TABL2, R1 /* */

ADD R1, 0x1

Now it is impossible for both the execution pipeline and the memory to respond to these two
store a value that has not yet loaded: the register write-back stage is after the memory wri
objects TABL1 and TABL2 are located in the same open row in memory. As a result, an un
store request will start in the memory.
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5.1. 
Mic

et applications are mostly from the
r area-performance solution, operations
s a denormalized number, an underflow
ption flag on division operations is not
ons are necessary to correct this. Other
ccurately generated as specified by the
ure 13 depicts the microarchitecture

both blocks are combined in one datap-
are shared for both of the datapaths. As

performance penalty. Input registers for
datapaths is active for each instruction.
ting-Point Datapath: FPU Microarchitecture

Chapter 5 - Floating-Point Datapath

FPU
roarchitecture

TheTA2_SW scalar FPU implements a subset of the IEEE-754 floating-point standard. Since targ
embedded signal processing realm, only single-precision numbers are supported. To achieve a bette
on denormalized numbers are not supported and cause exceptions. In addition, whenever a result i
exception is raised and the minimum normalized number is produced for output. The inexact exce
IEEE-754 compliant, which is common for multiplicative division algorithms. Additional operati
exception flags – Invalid, Divide by Zero, Overflow, Underflow and Inexact (except divide) – are a
IEEE-754 standard. TheTA2_SW FPU implements only the “round to nearest” rounding mode. Fig

of the FPU. The FPU has two main blocks: ALU and Mul/Div. Exponent computation functions for
ath to reduce area. Similarly, converting logic to/from the internal number format and rounding logic
only one instruction can be issued at each cycle, combining common datapaths does not suffer any
the ALU and the Mul/Div blocks are controlled by separate enable signals so that only one of the
Table 3 shows the supported floating-point instructions and their pipeline laten y and throughput.

Figure 13:  TA2_SW FPU microarchitecture
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ughput

ing operands if necessary, aligning the fraction
t of the exponent, rounding and generating the
used for multiply and divide instructions. For
OprA in both the fraction and exponent datap-
e Fp2Int (Floating-point to integer) instruction,

it unsigned integer. If the floating-poin number
overflow detection is carried out thereafter. For
e format by conditionally inverting if the sign is

t

Floating-Point Datapath: FPU ALU

TABLE 3. FPU instruction latency/thro

* 5 cycles for consecutive divide instruction and 8 cycles for other subsequent instruction

5.2. FPU ALU A block diagram of the ALU is shown in Figure 14. Add/Sub instructions proceed by swapp
of the smaller operands, computing the fraction, normalizing the fraction with adjustmen
exception flag, if any. The exponent datapath includes three exponent adders that are also
Absolute/Negate instructions, OprB is preset to zero by the operand formatter then added to
aths. The controller determines the sign bit of the result based on the sign bit of OprA. For th
the fraction is shifted right depending on the value of exponent (157-ExpA), forming a 31-b
is negative, the fraction is inverted for the two’s complement representation. Rounding and
Int2Fp (Integer to floating-point instruction, the fraction is firs converted to sign-magnitud

Instruction Latency Throughpu

Add/Subtract 5 1

FP2Int/Int2FP 5 1

Absolute/Negate 5 1

Multiply 5 1

Divide 12 5/8*
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ly by this leading zero value. Note that

5.3. 
Divi

high performance is crucial for division
dely used for modern microprocessors.
gn for embedded processors. Since theTA2_SW
n goal. To achieve this, we
aylor series expansion, as shown in Fig-
which compute the higher-order terms
here are three major multiply operations
ting-Point Datapath: FPU Multiplier/Divider Unit

negative. Then the result is shifted left to remove leading zeros. The exponent is adjusted according
the exponent value of OprA is preset to 157, which corresponds to 230 in integer form.

FPU Multiplier/
der Unit

To meet performance requirements of modern scientifi applications such as 3D graphics rendering,
as well as multiplication. High-radix SRT dividers based on the digit recurrence algorithm are wi
However, this type of divider is extremely area-intensive and not necessarily the appropriate desi
chip architecture includes many components, a good area-performance solution is the primary desig
adapted the multiplicative division algorithm proposed by Liddicoat and Flynn, which is based on T
ure 15. This algorithm achieves fast computation by using parallel squaring and cubing units,
significantl faster than the traditional serial multipliers with a relatively small hardware overhead. T
to produce a quotient with 0.5 ulp (unit in the last place) error.

Figure 14: TA2_SW FPU ALU datapath
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ien y, all of these multiply operations are exe-
es. However, through careful pipeline schedul-
able for an initial seed value is implemented
 under the high-performance timing specifica

gorithm
Floating-Point Datapath: FPU Multiplier/Divider Unit

One additional multiply operation is required for exact rounding. To maximize the area effic
cuted by one multiplier. By sharing the multiplier, the pipeline latency increases by four tim
ing, we were able to achieve high throughput for consecutive divide instructions. A lookup t
using a 128x7-bit ROM. A two-stage pipelined multiplier is used for better synthesis results

Figure 15: Liddicoat and Flynn division al
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es the operations in each cycle for the

th
ting-Point Datapath: FPU Multiplier/Divider Unit

tions. Figure 16 shows the block diagram of the fused multiplier/divider unit, and Table 4 summariz
divide instruction.

Figure 16: TA2_SW FPU multiplier/divider datapa
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on

clock cycles are required to complete one divide
k cycles. If any other type of instruction follows

4

Floating-Point Datapath: FPU Pipelining

TABLE 4. Steps for divide operati

5.4. FPU Pipelining Figure 17 shows the pipeline diagram for three consecutive divide instructions. Although 12
instruction, the pipeline is designed such that divide instructions can be issued every f ve cloc

Ste
ps

Operation Pipeline
Stage

1 X=ROM(b) MD1

2 M1=b*X (stage1) MD2

3 M2=b*X (stage2), M1=a*X (stage1) MD3/MD2

4 SC=1-M2, M2=a*X (stage2) MD4/MD3

5 S=1+SC+SC2+SC3, AX=M2 MD5’/MD

6 M1=AX*S (stage1) MD2

7 M2=AX*S (stage2) MD3

8 Qt=trunc(M2)+1 MD4

9 M1=b*Qt (stage1) MD2

10 M2=b*Qt (stage2) MD3

11 R=round(Qt) MD4

12 Result=format(R) MD5
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as shown in Figure 18. All other combi-

uctions
ting-Point Datapath: FPU Pipelining

a divide instruction, a pipeline stall for seven clock cycles is required to ensure in-order completion
nations of instructions run without pipeline stalls.

Figure 17: Pipeline timing for consecutive divide instr
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r threaded WideWord mode. This FPU does
operation of this FPU are similar to the scalar

 other type of instruction
Floating-Point Datapath: FPU Pipelining

There is also an FPU in the FPCA portion ofTA2_SW that can be used in either streaming o
not support divide operations, and as a result, is a 3-stage pipelined FPU. The principles of
FPU described previously in this section.

Figure 18: Pipeline timing for divide instruction followed by
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6.1. 
Feat

ithmetic cluster as a wide datapath.
supports selective execution of instruc-
to the data paths that participate in the
that participate in the conditional exe-
instruction’s participation field. The

he instruction’s participation fiel deter-
ch data path.

6.1.1 he participation fiel specifie two ways
each data path: (1) Always participate,
dition local to its own data path is true.

essor Instruction Set Manual, and is

6.1.2 PM) register. The PM register is a 5-bit
condition codes EQ, GT, LT, OV or the

stance, if the PM value is 00110, the EQ

to select M for participation.
Word Datapath: WideWord Features

Chapter 6 - WideWord Datapath

WideWord
ures

As noted in earlier chapters, theTA2_SW RISC processor has the ability to control an external ar
When controlled in this manner the wide datapath supports a number of interesting features. First, it
tions on sub-fields within a 256-bit value. Under selective execution, only the results corresponding
computation are written back, or committed, to the instruction’s destination registers. The data field
cution of a given instruction are derived from the condition codes or the mask register, plus the
conditions used (condition codes or mask register) are specifie in the participation mode register. T
mines how the condition code (or mask register) bits are combined to specify the participation of ea

. Participation fiel Each WideWord instruction with support for conditional execution has a 2-bit participation field T
in which the condition code (or mask register) bits are combined for determining participation of
where all data field participate; (2) Local participation, where a data fiel participates only if a con
The encoding of the participation field (PP) bits is described in the documentTA2_SW RISC Proc
also listed in the following table:

. Participation Mode The conditions that are inspected for participation depend on the value of the Participation Mode (
register that is read/written using the mfspr/mtspr instructions. The conditions correspond to the
mask register M. The encoding of the Participation Mode is shown in the following table:

Any combination of the 5 conditions listed in the table can be used to determine participation. For in
and GT condition codes are ORed together to determine participation.

In addition, if the mask register is updated, the participation mode register is automatically updated 

PP Value Participation Definitio
00 Always participate
01 Local participation
10 Reserved
11 Reserved

PM Value Mask/Condition Code
00001 M
00010 EQ
00100 GT
01000 LT
10000 OV
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at this simple example is not a complete imple-

ister and condition codes

n 8-bit datapaths, independently of the datapath
t the condition bits for participation (condition
n instruction that operates on 32-bit data fields

2-bit data field. Therefore, since the WideWord
n code/mask register corresponding to a 32-bit
grammer’s responsibility to ensure that the con-
ister or by performing a previous operation with

ide registers. The permutation network supports
n be moved into any 8-bit data fiel of the desti-
t containing 32 indices corresponding to the 32
same 8-bit data fiel of the destination register,
ur below illustrates a permutation on 8-bit and

ster
WideWord Datapath: Permutation

The figur below illustrates an implementation of local participation for data path i (note th
mentation of a participation bit and does not include the participation field bits)

Figure 19: Example of participation bit derived from PM reg

6.1.3. Setting the
condition bits for
participation

For simplicity, the WideWord ALU performs conditional write-backs (commits the results) o
width of the instruction. Conditional operations on 16-bit or 32-bit data paths assume tha
codes or mask register) are set consistently with the current datapath width. For example, a
should have a 32-bit result written back to the destination register, for each participating 3
ALU performs conditional write-backs of 8-bit values, the 4 consecutive bits of the conditio
datapath should be set consistently (either all ones, for participation, or all zeros). It is the pro
ditions for participation are consistent with the datapath width, either by setting the mask reg
the same datapath width to set the condition codes.

6.2. Permutation The WideWord permutation network supports fast alignment and reorganization of data in w
general permutations of 8-bit data fields that is, any 8-bit data fiel of the source register ca
nation register. A permutation is specifie by a permutation vector, which is a 256-bit objec
8-bit data field of a WideWord. Each 8-bit fiel of a permutation vector corresponds to the
and contains the index of the source data fiel to be moved into that destination field The fig
16-bit data paths, and the corresponding permutation vectors.

Mi
EQi
GTi
LTi
OVi

Participation Mode regi

Participationi
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d 16-bit data paths

utation vector is contained in a general-purpose
ng WideWord operations. wprmi selects a per-
et of frequently used permutation vectors in the
instructions are described in more detail in the

4,00

0

1,00

0

ta fie

ta fie
WideWord Datapath: Permutation

Figure 20: Example of permutation vectors for 8-bit an

Two types of permutation operations are supported: wprm and wprmi. In wprm, the perm
wide register, allowing permutation vectors to be loaded from memory and manipulated usi
mutation vector from a lookup table, supporting faster permutations (one operation) for the s
table. The hardwired permutation vectors are listed in the following table, and the permute
document TA2_SW RISC Processor Instruction Set Manual.

index vector
0x00 0x000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F
0x01 0x0102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F00
0x02 0x02030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F0001
0x03 0x030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F000102
0x04 0x0405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F00010203
0x05 0x05060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F0001020304
0x06 0x060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F000102030405

source reg

dest reg

perm vector 31,27,30,26,29,25,28,24,23,19,22,18,21,17,20,16,15,11,14,10,13,09,12,08,07,03,06,02,05,01,0

31

31,30,23,22,29,28,21,20,27,26,19,18,25,24,17,16,15,14,07,06,13,12,05,04,11,10,03,02,09,08,0

31

source reg

dest reg

perm vector

Example (a): shuffle sequences of 8 fields, for 8-bit da

Example (b): shuffle sequences of 8 fields, for 16-bit da
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0x07 0x0708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F00010203040506
0x08 0x08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F0001020304050607
0x09 0x090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F000102030405060708
0x0A 0x0A0B0C0D0E0F101112131415161718191A1B1C1D1E1F00010203040506070809
0x0B 0x0B0C0D0E0F101112131415161718191A1B1C1D1E1F000102030405060708090A
0x0C 0x0C0D0E0F101112131415161718191A1B1C1D1E1F000102030405060708090A0B
0x0D 0x0D0E0F101112131415161718191A1B1C1D1E1F000102030405060708090A0B0C
0x0E 0x0E0F101112131415161718191A1B1C1D1E1F000102030405060708090A0B0C0D
0x0F 0x0F101112131415161718191A1B1C1D1E1F000102030405060708090A0B0C0D0E
0x10 0x101112131415161718191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F
0x11 0x1112131415161718191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F10
0x12 0x12131415161718191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F1011
0x13 0x131415161718191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F101112
0x14 0x1415161718191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F10111213
0x15 0x15161718191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F1011121314
0x16 0x161718191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F101112131415
0x17 0x1718191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F10111213141516
0x18 0x18191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F1011121314151617
0x19 0x191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F101112131415161718
0x1A 0x1A1B1C1D1E1F000102030405060708090A0B0C0D0E0F10111213141516171819
0x1B 0x1B1C1D1E1F000102030405060708090A0B0C0D0E0F101112131415161718191A
0x1C 0x1C1D1E1F000102030405060708090A0B0C0D0E0F101112131415161718191A1B
0x1D 0x1D1E1F000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C
0x1E 0x1E1F000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D
0x1F 0x1F000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E
0x20 0x00020406080A0C0E10121416181A1C1E01030507090B0D0F11131517191B1D1F
0x21 0x010003020504070609080B0A0D0C0F0E111013121514171619181B1A1D1C1F1E
0x22 0x03020100070605040B0A09080F0E0D0C13121110171615141B1A19181F1E1D1C
0x23 0x07060504030201000F0E0D0C0B0A090817161514131211101F1E1D1C1B1A1918
0x24 0x0F0E0D0C0B0A090807060504030201001F1E1D1C1B1A19181716151413121110
0x25 0x1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09080706050403020100
0x26 0x0002010304060507080A090B0C0E0D0F1012111314161517181A191B1C1E1D1F
0x27 0x0004010502060307080C090D0A0E0B0F1014111512161317181C191D1A1E1B1F

index vector
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6.3. ers according to a given condition. The
LT or GT, or the M register. The follow-

a previous wsubc instruction with the
Word Datapath: Merge

Merge The WideWord unit supports a special instruction (wmrg) for merging data from two source regist
condition is specifie by the WW fiel of the instruction, and can be one of the condition codes EQ,
ing table shows the encoding of the WW field

The figur below illustrates a merge operation using the condition LT. The condition codes are set by
same data path width as the wmrg instruction.

0x28 0x00080109020A030B040C050D060E070F10181119121A131B141C151D161E171F
0x29 0x0001040508090C0D1011141518191C1D020306070A0B0E0F121316171A1B1E1F
0x2A 0x02030001060704050A0B08090E0F0C0D12131011161714151A1B18191E1F1C1D
0x2B 0x06070405020300010E0F0C0D0A0B080916171415121310111E1F1C1D1A1B1819
0x2C 0x0E0F0C0D0A0B080906070405020300011E1F1C1D1A1B18191617141512131011
0x2D 0x1E1F1C1D1A1B181916171415121310110E0F0C0D0A0B08090607040502030001
0x2E 0x000104050203060708090C0D0A0B0E0F101114151213161718191C1D1A1B1E1F
0x2F 0x0001080902030A0B04050C0D06070E0F1011181912131A1B14151C1D16171E1F
0x30 0x0001020308090A0B1011121318191A1B040506070C0D0E0F141516171C1D1E1F
0x31 0x04050607000102030C0D0E0F08090A0B14151617101112131C1D1E1F18191A1B
0x32 0x0C0D0E0F08090A0B04050607000102031C1D1E1F18191A1B1415161710111213
0x33 0x1C1D1E1F18191A1B14151617101112130C0D0E0F08090A0B0405060700010203
0x34 0x0001020308090A0B040506070C0D0E0F1011121318191A1B141516171C1D1E1F
0x35 0x0001020310111213040506071415161708090A0B18191A1B0C0D0E0F1C1D1E1F
0x36 0x1011121300010203141516170405060718191A1B08090A0B1C1D1E1F0C0D0E0F
0x37 0x08090A0B0C0D0E0F000102030405060718191A1B1C1D1E1F1011121314151617

index vector

WW Value CC
00 EQ
01 LT
10 GT
11 M
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6.4. ) between wide registers and scalar inte-
g-poin registers. The transfer functions
ister), and the destination is a wide reg-

uction Set Manual.

0 8 4 4
Word Datapath: Transfers

Transfers A set of transfer instructions allows data to be moved between WideWord and other register files (1
ger registers; (2) from wide register to wide register; and (3) between wide registers and scalar floatin
where the source is a scalar value (scalar integer or floating-poin register or a data fiel in a wide reg
ister allow the source data to be replicated and stored into all the fields of the destination

The complete set of transfer instructions is described in detail in the TA2_SW RISC Processor Instr

1 27 9 35 6 2 9 3 7 7

1 7 3 6 0 8 3 4

wmrgltw r3, r1, r2
wsubcw r4, r1, r2

r1 r2

r3

1 1 0 1 0 0 1 0LT (condition)
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7.1. from the node memories. In addition to
y reduce bandwidth even further due to

ent of an application is placed in a dif-
tches from memory would effectively
_SW avoids most of the bandwidth

7.2. 
Cac

size is 32 bytes, and each cache line
g the cache. TheTA2_SW architec-
cache does not contain a snooping port

invalidating stale cache lines when the

7.3. 
Cac

ing the organization of the core ram and
Each line is then capable of storing eight
al address, for each line of core RAM,
ly present and thereby optimize the stor-
r the line contents is empty or it contains

ded as shown in Figure 22 for determin-
e address translation unit. For example,
truction fetch engine are specifie to be
which correspond to bits 20 through 26

anslation of the upper 20 bits. By the

ctions

RAM

 bits
uction Cache: Introduction

Chapter 7 - Instruction Cache

Introduction It is of critical importance to keep instruction fetches from interfering with the fl w of operand data
the reduction of operand data bandwidth due simply to contention, instruction fetches from memor
the resulting increase in memory latency because they disrupt reference locality. Since the code segm
ferent area of memory from the data segment, interleaving instruction fetches with operand fe
randomize memory accesses that could have otherwise been satisfied in a page-mode fashion.TA2
losses by implementing a small instruction cache.

Instruction
he Description

The TA2_SW RISC processor contains a 4-Kbyte, direct-mapped instruction cache. The cache line
can be loaded or invalidated individually. In addition, the entire cache can be invalidated by disablin
ture does not support self-modifying code, so the instruction cache has no write-back capability. The
and is therefore not kept coherent with memory automatically. Kernel software is responsible for
backing memory for those lines is being loaded with new code.

Instruction
he Organization

The cache consists of three major components: core ram, tag ram, and the controller. A diagram show
tag ram is shown in Figure 21. The core RAM consists of 128 lines, where each line is 256 bits long.
32-bit instructions. The tag RAM contains a 24-bit tag, 4 bits of device ID and 20 bits of physic
although the physical address fiel could be reduced to match the amount of physical memory actual
age and performance of tag accesses. Each tag RAM line also contains a valid-bit to indicate whethe
valid information.

An instruction virtual address generated by the processor instruction fetch engine is translated/deco
ing placement or validity within the cache. The instruction cache unit operates in conjunction with th
the least significan 12 bits of the 32-bit instruction virtual addresses generated by the processor ins
unaffected by the address translation process. Therefore, the seven most significan of these 12 bits,
of aTA2_SW node bus address, can be safely used to index into the cache simultaneously with the tr

Physical AddressLine 0

Line 127

V Instru

Tag RAM Core 

20 bits 1 bit 256

Figure 21: Instruction Cache Organization

Device ID

4 bits
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nts can be compared with the physical
A2_SW node bus address, and 4-bit
ruction virtual address are used to select

ation on how virtual addresses are con-

7.4. 
Cac

r. The controller is responsible for man-
memory, and invalidating cache lines.

00

3026 31

umber

2927

tion Cache Operation

ctly from bits 20-31
ted instruction address

instruction
index
uction Cache: Instruction Cache Operation

time the appropriate tag has been accessed, the translation has taken place, so that the tag conte
address, including device ID. The translated upper 20 bits, corresponding to bits 0 through 19 of aT
device ID are then used as the tag information for a cache line. Bits 27 through 29 of a processor inst

a specifi instruction within a cache line. Refer to Chapter 8 on address translation for more inform
verted to TA2_SW node bus physical addresses and device IDs.

Instruction
he Operation

The operation of the instruction cache is best described by definin the tasks of the cache controlle
aging all activity of the cache, including instruction fetches from the cache, loading cache lines from

0 19 20

cache line n

Figure 22: Use of Virtual/Physical Instruction Address Bits in Instruc

taken dire
of untransla

upper physical address

0

device ID

3

taken from output of address translation unit
and used as tag for corresponding line



Instr  Page 41 of 56

ates. The FSM diagram is shown in Fig-

quest, a 256-bit data item including the
ing data, and placed onto the instruction

le bit in the PSW. In this state, two oper-
n fetch by comparing the tag portion of
alid bit is set, then the desired word is
is negated, and the controller enters the
struction address is reset if the tag of the

ed

e

e

uction Cache: Instruction Cache Operation

The controller is basically a finit state machine (FSM) with three states, where each state has sub-st
ure 23.

After reset, the cache controller is disabled. In this state, when the processor makes an instruction re
desired instruction is fetched from the memory, the requested instruction is selected from the incom
bus. All the valid bits are also reset when the controller enters the disabled state.

The controller enters the normal state by software enabling of caching with a write to the cache enab
ations are possible: read and invalidate. During a read operation the controller performs an instructio
the supplied address with the tag of the appropriate line of the tag RAM. If they match and the v
selected, placed onto the instruction bus, and the HIT signal is asserted. Otherwise, the HIT signal
memory service state. If the INV signal is high, then the valid bit of the cache line specifie by the in
address matches the tag of the line.

Hit

Hit      Hit

Hit Inv

Enable

Enable

Enable

Normal Disabl

Service

Enabl

Figure 23: Cache Controller Finite State Machin
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ta is fetched from the memory, it is also
, and the valid bit of that line is asserted.

7.5. 
Inst

n cache line invalidate) instruction.
s found in the cache, the corresponding

7.6. che tags. The implication is that the
device. A jump to an address that maps
revent aliasing of addresses to the same
not always be necessary. For example,

necessary to disable and invalidate the
uction Cache: Cache Control Instructions

The memory service state is very similar to the disabled state. The only difference is that when the da
written to the appropriate core RAM line, the tag is written to the corresponding line of the tag RAM

Cache Control
ructions

The only cache control instruction supported by theTA2_SW instruction set is the ICLI (instructio
This instruction supplies an address using the register-plus-offset addressing mode. If the address i
cache line is invalidated.

Deviations Initial implementations of theTA2_SW architecture may not contain device ID information in the ca
icache should be enabled only when instruction fetch streams can be guaranteed to map to the same
to a different device should be preceded with a disabling of the icache to invalidate its contents and p
cache line from distinct device IDs. While these actions are sufficien for the general case, they may
when booting, if ROM code is copied directly to corresponding addresses of an eDRAM it is not
icache contents when jumping from ROM to eDRAM.
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8.1. SW RISC processor must support a
e is prohibitive. To simplify translation,

ations running on any node.
local node processing.
epted during initialization when the

the physical address. To condense trans-
se address and size. The local memory
hange in futureTA2_SW imple-
eaning only when assigned by system

r each of the following:

translation. In addition to the local seg-
ll as for any remote data for which it is
dly, and translation information on each

l addresses for those accesses which are
at require translation include instruction
y load or store instructions.

t is needed to effect efficien translation.
lso, one virtual base, limit, and physical
four sets of global segment registers,
rect support for home node translation,
ess Translation: Introduction

Chapter 8 - Address Translation

Introduction Parcels, application code, and data contain virtual addresses. To interpret these addresses, aTA2_
translation mechanism. However, the overhead of maintaining conventional page tables at each nod
we classify memory according to usage:

• global memory is composed of contiguous segments distributed across nodes, visible to applic
• dumb memoryis a region of a node’s memory allocated to some other entity and untouched by 
• local memoryis a region of a node’s memory used exclusively by node routines. This rule is exc

Master RISC Node, or another system boot process, loads node software.

A node must be able to rapidly determine if an address is located in its own memory, and if so, fin
lation information, we use segments, each of which is defined by segment registers containing a ba
region is partitioned into eight segments in theTA2_SW architecture, although this number could c
mentations. Like pages in a conventional system, the segment descriptors are generic, and have m
software. For example, a logical allocation of the eight segments would be to assign one segment fo

1. Kernel code

2. Kernel data

3. Kernel stack

4. Kernel parcel buffer

5. User code

6. User data

7. User stack

8. User parcel buffer
Remote addresses are translated via the concept of a home node, which is guaranteed to have the
ments, a node maintains translation information for its resident portion of the global memory, as we
the home node. The major advantages of this approach are that translation may be accomplished rapi
node scales well.

The primary functions of the node address translation unit are to translate virtual addresses to physica
locally resident and to provide access protection. The types of accesses generated by a processor th
fetches and data accesses to memory or memory-mapped devices such as parcel buffers, generated b

Given the simplicity of the address translation scheme discussed above, very little hardware suppor
A segment base address register and limit register is needed for each of the eight local segments. A
base register are needed for each resident global segment. The initialTA2_SW architecture provides
although alternative architectures could provide more. The address translation unit contains no di
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the portion of global memory for which
rms the home node translation.

8.2. 
Tran
Mec

ser applications via segments. Seg-
mount of physical memory available to
size must be 2n MASS’s, and the base

e stipulations base and limit register val-
rtual address generated by the processor
a 4-bit device ID and 27-bit WideWord
node interconnect specification,

ion unit is disabled, direct address trans-
e ID of the resulting physical address is

eft to form the 27-bit WideWord address
de is invoked, the addressable space

s

s)

nslation disabled

31

26

00001=
ess Translation: Address Translation Mechanisms

although the preferred system programming is such that the global segments resident on a node form
that node is the home node. If this is not the case, address faults invoke system software which perfo

Address
slation

hanisms

TheTA2_SW RISC processor provides 4 Gbytes of virtual address space accessible to kernel and u
ment sizes can range from 256 bytes (minimum allowable segment size (MASS)) to the maximum a
a node. The initial architecture supports a maximum segment size of 16 MBytes. Every segment
address for each segment must be aligned to a value that is a multiple of the segment size. Given thes
ues are assumed to be in units of MASS’s, resulting in 24-bit base address and 16-bit limits. Each vi
is 32 bits wide, and the resulting physical address generated by the address translation unit contains
address, consistent with theTA2_SW node interconnect specification. As indicated in theTA2_SW
lane enable signals are used for any data access that is less than 256 bits.

The processor address translation unit supports three main types of address translation:

• direct address translation
• local address translation
• global address translation

Figure 24 shows the three main address translation mechanisms provided. When the address translat
lation occurs, and the address translation unit will not generate any exceptions. In this case, the devic
formed from bits 5 through 8 of the virtual address, and bits 9 through 26 are zero-padded from the l
needed by theTA2_SW node bus. (Therefore, when the ATU is disabled or the direct translation mo

Figure 24: Address Translation Type

scope

virtual address (va)

scope 00000=

global translation local translation

va[0:3] 0000≠

physical WideWord address (addressable units of 256-bit

direct translation

address tra

0 4 5

0

OR scope

device ID
0 3
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lane enable signals consistent with the 

rmine what type of translation should be
VA. If this 5-bit value is zero, then local
range of 0x08000000 to 0x0FFFFFFF,

translation is disabled, an exception can
00 to 0x0FFFFFFF is a supervisor-level
ill trigger an exception. Lastly, if any of
ation is used.

dress is used to select a set of local seg-
n to the device ID field of the physical
s to form the 27-bit WideWord physical
th the offset to determine if the virtual

lation style. In this case, the address is
ied by a valid set of the global segment
ts, i.e., system software must set up the
lobal segment. The multiple sets of glo-
ess Translation: Address Translation Mechanisms

is only 128 MB.) Also, as previously noted, if the address of the access is not 256-bit aligned, then
TA2_SW node interconnect specification are generated

If address translation is enabled, then the scope fiel of the virtual address must be inspected to dete
used. In the initial architecture, the scope fiel is the most significan f ve bits of the virtual address
translation is used. If the scope field equals binary value 00001, i.e., the virtual address falls in the
direct translation is used to generate the physical address; however, unlike the mode where address
be generated in this case if access privileges are violated. By definition the address region 0x080000
region. Therefore, any user-level attempt to access this region while address translation is enabled w
the four most significant bits of the virtual address are non-zero, i.e., a[0:3] != 0, then global transl

Figure 25 shows the steps involved in local address translation. The 3-bit index fiel of the virtual ad
ment registers for the translation. The device ID entry of the selected segment is simply passed o
address. The segment base is simply bitwise-ORed with the zero-padded offset of the virtual addres
address. The specified segment limit register is also accessed and manipulated in conjunction wi
address is valid. More information on protection is given in the next section.

Figure 1 shows the steps involved in global address translation, which is a reverse address trans
checked to see if it is mapped locally by simply ensuring that the address is within the range specif
base address and limit registers. The hardware does not protect against overlapping global segmen
global segment registers appropriately so that any global virtual address is contained in at most one g

Figure 25: Local Address Translation
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anslation, similar to a fully associative
on checking is given in the next section.
ice ID entry of the matching segment to
h a bitwise-OR of an offset with the glo-
e limit register of the matching segment

8.3. 
Prot

provides access protection and bounds
PR bits of a segment limit register spec-
corresponding encodings.

 Bit Encodings

)

ess Translation: Memory Access Protection

bal segment registers are checked concurrently to see if any one of them should be used for the tr
cache. If there is no match, a translation exception occurs. More detail on this matching and protecti
If there is a match, the virtual address is simply translated into a physical address by passing the dev
the appropriate fiel of the physical address. Also, the physical WideWord address is formed throug
bal segment physical base register of the matching global segment. The offset is formed by using th
to mask off the appropriate part of the virtual address.

Memory Access
ection

In addition to the translation of virtual addresses to physical addresses, the address translation unit
checking to ensure that the offset portion of an address is not outside the range of the segment. The 2
ify the access protection mode for that segment. Table 5 shows the possible access modes and their 

FIGURE 1.

Figure 1: Global Address Translation

TABLE 5. Segment Access Modes and Corresponding PR
Encoding of PR Bits Supervisor Privilege User Privilege

00 RW (read-write) RW
01 RW RO (read only
10 RW none
11 RO none
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level of protection for local addresses is
l segment is not asserted, an unmapped
its. If the processor mode (supervisor or
n invalid access exception occurs (refer
e limit value of the specifie segment is
nt size. If the segment size is exceeded,
ording to the Implications section at the

that of local addresses, the mechanism
e of the four sets of global segment reg-

occurs when a set of segment registers
the global virtual base and limit encom-
here va is the virtual address and base is

tch test. If there is a valid set of registers
n invalid access exception occurs (refer

8.4. 
Tran
Inst

is the MTATR (move to address transla-
register, local protection register, global
GPR is the data source for an MTATR
plementations may truncate some seg-
it register is a concatenation of a limit

translation by writing to the appropriate

8.5. chapter to operate correctly. First, every
to a value that is a multiple of the seg-

ions used for translation and protection
fect the 12 least significant bits so that
ment base addresses must be some mul-
uirement is met.

dex]15)

base9)) … limit15 va23 base23⊕( )∧( )∨ ∨
ess Translation: Address Translation Unit Instructions

Each local segment limit register consists of a limit value, a valid bit, and the two PR bits. The firs
provided by ensuring that a valid set of segment registers is used. If the V bit of the selected loca
access exception occurs (refer to Chapter 9). The second level of protection is provided by the PR b
user) and access type (read or write) are not allowed by the PR bit setting of the selected segment, a
to Chapter 9). The fina level of protection for local addresses is provided with bounds checking. Th
used to inspect bits in the virtual address offset to ensure that the offset has not exceeded the segme
an unmapped access exception occurs (refer to Chapter 9). Assuming the limit value has been set acc
end of this chapter, an equation specifying the exception condition E is:

Although the conditions for address translation exceptions for global virtual addresses are similar to
is quite different due to the fully associative nature of the global segment hardware. Basically, if on
isters does not “match” an attempted global address access, an exception occurs. A successful match
is valid, the PR bit setting allows the access type being attempted, and the address range specifie by
passes the global address of the operation. An equation specifying the range match condition RM, w
the contents of the global virtual base register, is:

An unmapped access exception is triggered if there is no valid set of registers that pass the range ma
that passes the range match test, but the PR bits for that segment do not allow the attempted access, a
to Chapter 9).

Address
slation Unit

ructions

The primary instruction specifie by the instruction set which affects address translation operation
tion register) instruction. The destination fiel of this instruction can be set to specify any local base
physical base register, global limit register, or global physical base register. Since the contents of a
instruction, each of these address translation unit registers is defined to be 32 bits wide, although im
ment registers to optimize for the actual amount of physical memory present. Furthermore, each lim
value, a valid bit, and the two PR bits. The MTPR instruction is also used to enable/disable address
bit of the PSW register.

Implications There are a number of stipulations implied for the address translation mechanisms described in this
segment size must be a power of 2 MASS’s, and the base address for each segment must be aligned

ment size. Also, the limit value must be set to for a segment size of , so that logic funct
checking work properly. Finally, the virtual-to-physical translation for code segments must not af
instruction cache look-ups can proceed concurrently with translation. While stipulating that code seg
tiple of 4Kbtyes is sufficient, it is not necessar , and less strict policies can be used to ensure the req

E va8 limit[index]0∧( ) va9 limit[index]1∧( ) … va23 limit[in∧(∨ ∨ ∨=

RM va0 base0⊕( ) va0 base0⊕( ) … va7 base7⊕( ) limit0 va8 base8⊕( )∧( ) limit1 va9 ⊕(∧(∨ ∨ ∨ ∨ ∨=

2n 1–( ) 2n
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dependent. Thus, the PSW contains two
the exception source word contains sep-
mplications for better performance. For
rrently, the address translation hardware
ess Translation: Implications

The exception portion of the architecture assumes that instruction and data address translations are in
address translation enable bits (one for instruction addresses and one for data addresses). Likewise,
arate status bits for instruction and data translation exceptions (refer to Chapter 9). There are also i
example, to allow address translation for both instruction fetches and data fetches to proceed concu
must be dual-ported.
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ns.
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ent errors in interrupt-service software.
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de DRAM, so the node DRAM must be

the catch-all “software-vectored excep-
 the appropriate exception handler.

s

rted, the reset address is the base of
wise, the reset address is the base of
ddresses from the untranslated
ptions: Hardware-Vectored Exceptions

Chapter 9 - Exceptions
This chapter define the exceptions and exception-handling mechanism for theTA2_SW RISC proc
cution of node instructions, and interrupts, from other sources such as an internal timer or external in
mechanism. For the most part this document will refer to both exceptions and interrupts as exceptio

Traditionally RISC processors have had relatively primitive mechanisms for exception handling co
have multiple stack registers, extensive hardware-supported vectoring and priority-level controls fo
supporting hardware features, it is common to fin problems of priority inversion and stack managem
Errors in priority assignment are not easily fi ed once cast in hardware. Exception handling hardwa
with high-performance hardware.

The exception handling scheme forTA2_SW has a modest hardware requirement, exporting much o
is easier to mend. It does provide an integrated mechanism for handling hardware and software exc
a fl xible priority assignment scheme which minimizes the amount of time that exception recognitio
supports traditional stack-based exception handlers, we also outline a non-recursive dispatching sch
features to allow preemption of lower-priority exception handlers using a mechanism which should 

Hardware-
ored Exceptions

TheTA2_SW node processor must respond to a variety of exceptions due to internal instruction proc
to external stimuli. The processor has only three hardware-vectored exceptions. All other exception
hardware assistance. The exceptions are listed in descending priority order.

Note that three of the vector addresses point to exception handler routines located at the start of no
initialized and functional for any operation beyond system RESET.

All exceptions, other than reset and undefined-instruction exceptions, are vectored by hardware to
tion” handler, which examines the exception source word to perform a software-vectored dispatch to

TABLE 6. Hardware-Vectored Exceptions
Exception Vector

Address
Note

RESET 0x08000000 or
0x0A000000

If the “rom_present” input signal is asse
the node FlashROM, 0x0A000000; other
the node EDRAM, 0x08000000 (using a
region, refer to Chapter 8)

Undefined Instruction (incl. BRK 0x08000100
Software-vectored exceptions 0x08000200
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caused the exception, if the exception
r instruction did complete. For example,
ch caused the access exception, while a
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e nature of the exception, the faulting
ory access instruction after an address-

xception handling code requiring more
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Vect
Desc

t addresses, depending upon the state of
has a FlashROM attached, the program
ddress region, and instruction fetch will
e program counter will be loaded with
state of the PSW register, processor sta-

ocessing
otes

dler
ction or next instruction
ptions: Hardware Support for Hardware-Vectored Exceptions

Hardware
port for
dware-Vectored
eptions

The node processor has several privileged registers and a privileged instruction, RFE, used to ret
processing.

All exception handlers operate in supervisor mode. The program counter and processor status words
isters before exception processing is begun The exception handling code runs in the same address
changes are performed at the exception handler if necessary. Other registers are set by specifi excep

event of a memory-access exception. The exception source word is set to indicate the cause of all
exceptions, which are implicitly identified by the hardware vectoring to associated exception hand
associated enable mask register are discussed at more length in the “Software-Vectored Exceptions”
abled. All other exceptions may be disabled in aggregate by clearing bit 3 in the PSW. In addition
Exception may be disabled selectively, by clearing a bit in the Exception Mask Register (refer to Se

Upon completion of exception handling, the RFE instruction will copy the FADR to the PC and the
cessing. Depending on the cause of the exception, the FADR may point to the instruction that
prevented the instruction from completing, or to the next instruction in the code sequence, if the prio
a memory access fault would load the FADR with the address of the load or store instruction whi
timer interrupt or external interrupt would load the FADR with the next instruction to be executed. T
ble for adjusting the FADR as needed prior to executing the RFE instruction. Depending on th
instruction may be retried, for example a WideWord instruction after a lazy register save, or a mem
translation adjustment.

The node processor provides four scalar system scratch registers to be used by exception handlers. E
registers are responsible for saving and restoring node processor registers as needed.

Hardware-
ored Exception
riptions

9.3.0.1. RESET (0x08000000 or 0x0A000000)
The external (system) RESET input causes instruction execution to begin at one of two possible rese
the rom_presentinput signal to the processor. If rom_presentis asserted, indicating the processor
counter will be loaded with 0x0A000000, the base address of the FlashROM in the untranslated a
begin from this address when the processor is released from reset. If rom_presentis negated, th
0x08000000, the base address of the eDRAM in the untranslated address region. Table 8 shows the
tus/control word, at reset.

TABLE 7. Hardware State at Start of Exception Pr
Register Field Value N

PSW MD 0 Mode is set to supervisor
PSW EE 0 Exceptions disabled
PC handler Address of exception han
FADR old PC Address of faulting instru
SSW old PSW Saved copy of prior PSW
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ndler for breakpoint instructions. Break-
ction opcodes as BRKx. For this type of
DR register points to the address of the
e convention that SR3 is reserved exclu-
ate to allow use of BRK prior to copying
xceptions must be re-enabled by setting

all bits of the Exception Mask Register

m. Recognition of this aggregate excep-
on recognition, to remove any hardware

9.4. 
Vect

exception cause requires examination of
nd also provides the ability for software

d SSW, prior to reenabling exceptions.
ntially lengthy handlers by splitting the
le except for reset. Secondary exception

s disabled

ng is disabled

sabled
ptions: Software-Vectored Exceptions

9.3.0.2. Undefined Instruction (0x08000100
This vector services all undefine instruction exceptions and also serves as the primary exception ha
point instructions are implemented by a software convention definin one or more undefine instru
exception to be recognized by the processor, bit 3 of the PSW must be set. Upon exception, the FA
undefine instruction. To allow the BRK mechanism to debug exception handling code, we adopt th
sively for use by this exception handler, which does not use other scratch registers. This is not adequ
of FADR and SSW however. Also, for this exception to be recognized in exception handling code, e

bit 3 of the PSW. To allow only undefine instruction exceptions, exceptions should be enabled while
(EMR) are cleared to disable all other exception types (refer to Section 9.5).

9.3.0.3. Software-vectored exceptions (0x08000200)
This vector provides the initial exception handling for all other exceptions and interrupts in the syste
tion may be disabled by privileged code altering the PSW and is automatically disabled upon excepti
requirement to support nested exceptions.

Software-
ored Exceptions

Most exception sources are serviced by a software-vectored exception handler. Determination of the
the 32-bit exception source word, which constantly monitors hardware which may cause exceptions a
to trigger exceptions.

Nested exceptions can be supported if the exception handler saves essential state, notably FADR an
The software-vectored exception handling procedure supports nesting of exceptions for some pote
exception handler into primary and secondary parts. Primary exception handlers are non-interruptib

TABLE 8. PSW State at RESET
Bit Field Value Notes

0 MD 0 Mode is set to supervisor

1 Unused X Reserved

2 IC 0 Instruction cache is disabled

3 EE 0 Exception recognition is disabled

4 WW 0 WideWord instruction processing i

5 FP 0 Floating-Point Instruction processi

6 - 7 Unused X Reserved

8 IA 0 Instruction address translation is di

9 DA 0 Data address translation is disabled

10 - 31 Unused X Reserved
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9.4.4
Exce
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Sup
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Exc

e word, ESW, and corresponding bits in
gister, ERR. When a software-vectored

ed, so that hardware events which cause
tion handling code, but other exceptions

software sources. Hardware-source bits
le software-source field are set by soft-
e exception source word can be cleared
ptions: Hardware Support for Software-Vectored Exceptions

handlers may be interrupted by other exceptions. They may or may not be re-entrantly interrupted b
type, depending on the handler code treatment of the mask register.

. Lightweight
ptions

Lightweight exceptions are those which can be serviced completely within the primary exception ha
sient exception state. Hardware disables further exceptions until reenabled by execution of RFE.

An example of a lightweight exception is the timer tick exception, which increments a counter in m
uling quantum, no further processing is required. If the tick does end a scheduling quantum, it trigg
does no further processing itself.

. Heavyweight
ptions

Heavyweight exceptions are those which cannot be serviced entirely within a primary exception h
saves necessary exception state in one of three locations. Temporary use is made of the system scra
as necessary, in a register save area in a fi ed-location memory area common to all primary excepti
particular exception, which is required for later processing by the secondary exception handler is sav
cific to that particular xception type.

. Primary Exception
lers

Primary exception handlers perform all of the processing for lightweight exceptions and the initi
exceptions.

The environment of primary exception handlers is highly constrained. They may use the system sc
save and restore any other GPRs. Primary handlers may call other routines conforming to the const
which is located at the top of the kernel stack segment. Calling a subroutine in the primary exception
ing the stack pointer to the fi ed top of the exception stack area. Primary handlers are written in ass

. Secondary
ption Handlers

Secondary exception handlers perform the non-initial processing of heavyweight exceptions. They
SR0-SR3, since exceptions are enabled during most of the execution of the secondary handler. S
restricted subset of the C language. Secondary handlers are written in a stylized form providing fun
cessing if preempted by higher priority exceptions.

Hardware
port for
ware-Vectored
eptions

All software-vectored exception sources have an associated bit define in the 32-bit exception sourc
the exception-enable mask register, EMR, the exception set register, ESR, and the exception reset re
exception is recognized, the global exception enable bit in the processor status word, PSW, is clear
changes to the ESW cannot trigger a nested exception. Reset exceptions may preempt primary excep
will not be recognized.

The exception source word is a 32-bit register recording exceptions initiated both by hardware and
in the exception source word may be set to one by hardware conditions, such as a pbuf interrupt, whi
ware writing a one to the corresponding bit location in the exception set register. Once set, a bit in th
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ithin segment boundaries
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 segment boundaries
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ster 13) count expired
attempted without enable
on attempted without enable
ptions: Hardware Support for Software-Vectored Exceptions

only by writing a one to the corresponding bit of the exception reset register. Although labeled regist

ter-address triggering functions; ESR and ERR do not maintain any state. That is, a one written to a
an immediate and one-time effect on the corresponding bit in the exception source word.

Bits in ESW are affected by hardware conditions and ESR and ERR actions regardless of settings
EMR. The bits of EMR merely enable, or disable, corresponding bits of ESW to cause exceptions
enable control via the exception enable bit in PSW and individually maskable controls for each bit o

The Exception Source Word has 32 possible hardware- and software-initiated exception sources. Th
increasing bit number.

TABLE 9. Exception-Related Registers
Name PR# Descr

Exception Source Word (ESW) 8 Specifies sources of xcept
Exception Enable Mask Register (EMR) 9 Bitwise exception enabling
Exception Set Register (ESR) 10 Write 1 to set correspondin

source fields onl
Exception Reset Register (ERR) 11 Write 1 to clear correspond

TABLE 10. Exception Source Word
Exception Name Initiator Bit# De

Watchdog Timer HW 0
Unmapped Instruction Access HW 1 Instruction access not w
Invalid Instruction Access HW 2 Instruction access not p
Unmapped Data Access HW 3 Data access not within
Invalid Data Access HW 4 Data access not permit
PBuf Interrupt HW 5
Reserved SW 6
Interval Timer HW 7 TIMER (protected regi
WideWord Not Available HW 8 WideWord instruction 
Floating Point Not Available HW 9 Floating-point instructi
Address Fault Fix-up SW 10
Received Packet Processing SW 11
Send Error Processing SW 12
Reserved SW 13
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and fatal.
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ular source is enabled by the mask reg-
xceptions are disabled in the new PSW.
to a reserved temporary area at a fixed

U or FPSR
U or FPSR (underfl w or

U or FPSR
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necessary

scription
ptions: Dispatch of Software-Vectored Exception Handlers

Dispatch of
ware-Vectored
eption Handlers

TheTA2_SW exception handling mechanism requires little specialized hardware support and suppo
ity handlers without requiring LIFO processing due to stack mechanisms. Dispatch is always to the h
is no possibility of pathological stack growth under high rates of exceptions. System overload due to
runs, which can be evident and recoverable, rather than stack explosion, which is typically obscure 

. Dispatch to the
ary handler

A new exception condition will be recognized if exceptions are enabled in the PSW and if the partic
ister. The hardware begins execution of code at the software-vectored exception vector address. E
Since the primary handlers are non-recursive and run to completion, processor state can be saved
address (rather than a true stack) as needed by the particular handler.

FP Divide by Zero HW 14
FP Invalid HW 15 Triggered by scalar FP
FP Unsupported Value HW 16 Triggered by scalar FP

overfl w)
FP Inexact HW 17 Triggered by scalar FP
Context Swapper SW 18
System Call HW 19
Privileged Instruction Violation HW 20
Scalar Integer ALU Exception HW 21
WideWord Integer ALU Exception HW 22
PBuf doorbell processing SW 23
Integer ALU Fix-up SW 24
WideWord ALU Fix-up SW 25
Floating Point Fix-up SW 26
Reserved SW 27
Lock Buzzer SW 28 May not be implement
Thread Rescheduler SW 29
Thread Dispatcher SW 30
Return to User Mode SW 31 Full register restore as 

TABLE 10. Exception Source Word
Exception Name Initiator Bit# De
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sistent and working copies with a write
e state machine or by updating function

be unwound in a LIFO order, theTA2_SW
hile storing the associated saved
andlers in priority order without requir-
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o assume the worst case and save entire
gister sets of the TA2_SW node.

ory dump, since the state of each active
igh-level structure. This is in contrast to
ptions: Dispatch of Software-Vectored Exception Handlers

The exception source word is copied into a scalar GPR and the ELO instruction is used to encode
numbered) set bit. This operation selects the highest priority source. The encoded source bit number
dler addresses, and the processor branches to that primary handler.

. Completion of a
ary handler

The selected primary handler determines whether the exception is lightweight enough to be handled
tional processing must be deferred to the secondary handler.

If the primary handler can complete the exception processing, it does so and then restores the sa
exception recognition by executing the RFE instruction. Prior to completion it will reset its associat

If the primary handler cannot complete the exception processing, it will copy the necessary state to
handler, and set the bit associated with the secondary handler by writing to the exception set registe
and resetting its source bit, it reenables exception recognition by executing the RFE instruction. Th
subsequently be recognized and begin exception processing. This may be the secondary handler just
or software exception handler.

. Dispatch of a
dary handler

The initial phase of the software vectoring of a secondary handler is the same as a primary handler. A
secondary handler code, the secondary handler is required to perform more elaborate state saving
higher-priority sources. The first phase of the secondary handler runs with xceptions disabled.

When a secondary handler begins execution it installs a pointer to its environment structure in the p
of SR2 is zero, it is not preempting another secondary handler. If the prior value is nonzero, it is preem
handler. To preempt, the current handler saves the state of the prior secondary handler by calling its
at a fixed offset within the environment The suspend routine copies the necessary state into the env
will typically hold only one instance of a given type of suspended secondary handler. This means tha
empt secondary handlers of a different type, we don’t support reentrant handling of multiple exc
straightforward extension to support a per-type stack or queue of multiple exception instances, in m
plete exception processing prior to encountering a subsequent exception of the same type reflects an

Secondary handlers are coded to record essential state at periodic intervals. In effect, a secondary h
progress in its environment with sufficien detail to allow processing to resume in the event of a pree
tain atomicity is to “double buffer” a structure with essential information and “flip between the con
to an index or pointer variable. Code progress can be recorded by using a state variable for a softwar
pointers.

In contrast to a traditional stack-based system, which keeps activation records on a stack which must
RISC dispatch scheme records the activation of the handler by a bit in the exception source vector, w
state of preempted handlers in handler-specifi environment structures. This ensures completion of h
ing hardware support of multiple priority levels for exception recognition. It may also reduce the a
can be coded to record the bare minimum of state to allow a resumption, rather than being forced t
register sets which may or may not have been altered. This is particularly significant for the la ge re

The “checkpointed” exceptions scheme is much easier to debug via an interactive debugger or mem
exception handler is recorded at fi ed locations in a form that may be conveniently examined as a h
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est-level bindings across large chunks of

9.6.4
secon

ng its associated exception source word
n will restore all disturbed register states
ptions: Dispatch of Software-Vectored Exception Handlers

a preemptive stack-based record, where the states of several handlers may be distributed in their low
stack at highly variable locations.

. Completion of a
dary handler

The secondary handler completes by reinitializing its checkpoint record to its starting state, resetti
bit, and executing an RFE. If no other exception is recognized, the lowest-priority software exceptio
and return to user-mode code.
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SCOPE. This document describes the TA2_SW article memory interface (also 
referred to as the node bus interface as its original application served as a generic bus 
interface). 

Item Description.  The Node bus is a high performance 256-bit bus with de-multiplexed 
address and data.  The Node bus is used as a memory access bus, an interface to 
input/output (I/O) devices, and/or a command and control bus.  This bus supports a 
command/address & data protocol. 

Node Bus Overview.  The Node bus is designed as point to point ring interface.  The 
ring consists of a single unidirectional channel with an optional second unidirectional 
counter-rotating channel.  A bidirectional ring configuration potentially allows lower 
latency for reads and writes between communicating devices on a node ring.   

 

Conventions:   

The Node Bus uses big-endian notation in its numbering of bits and DWORDs. 
However, since the Node Bus address is not a byte or a DWORD address, the Node 
Bus is not big-endian per se. None the less, TA2_SW  is a big-endian design, and it is 
recommended that devices which internally use byte or DWORD addresses, map those 
addresses to the Node Bus using a big-endian style. 

 
 

Figure 1.3-1 – Suggested DWORD addressing within a Wide word 
 

 
 

Figure 1.3-2 – Suggested Byte addressing within a DWORD 
 

Signal Definition 

Figure 2-1 shows the generic signals for unidirectional and bidirectional ring 
architectures in functional groups. Refer to a component’s RTL description for more 
detail on which of these signals are necessary for a particular component. 
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Figure 2-1 – Generic node bus interface signals  
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Signal Descriptions. 

Node Bus Signal Interfaces 

A unidirectional ring Node Bus shall support the following signal interfaces: 
 
nb_i in Node Bus Input – Channel input to 

device router. (Packet Structure as 
defined below) 

nb_o out Node Bus Output – Channel output from 
device router. (Packet Structure as 
defined below) 

 nb_valid_i in Node Bus Valid Packet In – Channel 
Transaction Valid to Device Router. 

 nb_valid_o out Node Bus Valid Packet Out – Channel 
Transaction Valid from Device Router. 

Table 2-1-1 – Unidirectional Ring Node Bus Signals 
 
A bidirectional ring Node Bus shall support the following signal interfaces: 
 
nb_a_i in Node Bus Input A – Channel A node 

input to device router. (Packet Structure 
as defined below) 

nb_a_o out Node Bus Output A – Channel A node 
output from device router. (Packet 
Structure as defined below) 

nb_a_valid_i in Node Bus Valid Packet In A – Channel A 
Packet Valid to Device Router. 

nb_a_valid_o out Node Bus Valid Packet Out A – Channel 
A Packet Valid from Device Router. 

nb_b_i in Node Bus Input B – Channel B node 
input to device router. (Packet Structure 
as defined below) 

nb_b_o out Node Bus Output B – Channel B node 
output from device router. (Packet 
Structure as defined below) 

nb_b_valid_i in Node Bus Valid Packet In B – Channel B 
Packet Valid to Device Router. 

nb_b_valid_o out Node Bus Valid Packet Out B – Channel 
B Packet Valid from Device Router. 

 
Table 2-1-2 – Bidirectional Ring Node Bus Signals 
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Node Bus Packet Structure: The Node Bus packet structure is shown below. 

Signal 
Name 

Applicable 
Transactions 

Notes 

cmd(0:1) 
 

All Node bus command input (Note: in this context only “command” 
refers to both command and reply transactions): 
 00 : Read Command  
 01 : Read Reply  
 10 : Reserved 
 11 : Write Command 

te Read and 
Write 
command  
 

Token Enable:  Used for devices that can optimize away 
reading or writing of tokens. 

0 : Tokens Disabled 
1 : Tokens Enabled 

For writes with te = 1, tokens follow the lane enables (i.e. tokens 
are written for those lanes that are enabled).  If the tokens are 
enabled and all data lanes are disabled, then all the tokens are 
written without the data. Devices incapable of handling tokens 
can ignore ‘te’. 

target(0:3) All Target ID input:  See section 3.1.9 
source(0:3) All Source ID input: See section 3.1.9 
bksz(0:1) Read 

Command 
and Read 
Reply 

Read command Block Size input: 
 00 : Reserved 
 01 : Single Wide Word Read 
 10 : Double Wide Word Read 
 11 : Quad Wide Word Read 
Read Reply: Sequence number (00 for first reply wide word, 01 
for second, 10 for third, and 11 for fourth) 

addr(0:26) All Wide Word Address input: address of a 272-bit wide word. 
data(0:255) All Wide Word Data input: 256-bits of data distinguishable as eight 

32-bit DWORDS.  For read commands bits 0-26 contain the 
reply address; bits 27-255 are invalid. 

token(0:15) Read Reply 
and Write 
command 

Wide Word Token input: 16-bits of tokens distinguishable as 
eight 2-bit tokens 

le(0:7) Read Reply 
and Write 
command 

Wide Word Lane enable inputs for writes.  All 1’s for Read Reply 
transactions. 

Lane Data Token 
0 0:31 0:1 
1 32:63 2:3 
2 64:95 4:5 
3 96:127 6:7 
4 128:159 8:9 
5 160:191 10:11 
6 192:223 12:13 
7 224:255 14:15  

Table 2-1-3 – Node Bus Packet Definition 
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Arbitration Pins. 

Before transmission of a Read command or Write command packet, arbitration must 
take place to ensure the slave device has space to buffer the command packet.  A 
master device on the Node Bus shall use the following request/grant/busy signals to the 
appropriate slave arbiter.   
 
req_edram out Node bus Request to EDRAM device.   
req_anbi out Node bus Request to ANBI device.   
req_pbcm out Node bus Request to Program Bus/CM 

device.   
req_rom out Node bus Request to Flash/ROM device.   
req_rio out Node bus Request to Rapid I/O device.   
req_extmem out Node bus Request to External Memory 

device.   
req_pbuf out Node bus Request to PBUF device.   
req_bridge out Node bus Request to PCI Bridge device.   
gnt_edram in Node bus Grant from EDRAM device.   
gnt_anbi in Node bus Grant from ANBI device.   
gnt_pbcm in Node bus Grant from Program Bus/CM 

device.   
gnt_rom in Node bus Grant from Flash/ROM device.   
gnt_rio in Node bus Grant from Rapid I/O device.   
gnt_extmem in Node bus Grant from External Memory 

device.   
gnt_pbuf in Node bus Grant from PBUF device.   
gnt_bridge in Node bus Grant from PCI Bridge device.   
busy_edram in Node bus Busy from EDRAM device.   
busy_anbi in Node bus Busy from ANBI device.   
busy_pbcm in Node bus Busy from Program Bus/CM 

device.   
busy_rom in Node bus Busy from Flash/ROM device.   
busy_rio in Node bus Busy from Rapid I/O device.   
busy_extmem in Node bus Busy from External Memory 

device.   
busy_pbuf in Node bus Busy from PBUF device.   
busy_bridge in Node bus Busy from PCI Bridge device.   

Table 2-1-3 –Node Bus Arbitration Signals 
 



  7

INTERFACE REQUIREMENTS. This section defines the general operation of the 
Node Bus and provides a functional description of each interface signal. 

Functional Description.  The Node Bus supports transactions, which represent end-to-
end operations from a source device to a target device.  A packet is defined as the 
collection of address/data/control information of a transaction. 

General Description.  The Node Bus shall support command transactions consisting of 
write and read commands and reply transactions consisting of read replies. 

 
Read operations are split into read command and one or more read reply transactions 
to allow data movement while waiting for returned read data.  Each read command 
transaction specifies a base address from which 1, 2, or 4 wide words are read 
(sequentially starting from the base address).  These words are then returned in order in 
1, 2, or 4 read reply transactions.  Any number of system clocks can occur between the 
read command and the corresponding read reply/replies.  Read command transactions 
are always wide word reads.  The block size field within the read command transactions 
specifies the number of words to be read.  The block size field within the read reply 
transactions specifies the sequence number of the word being returned.  
 
Write command transactions each contain one wide word. Write command transactions 
allow the master device to set any to all of the corresponding lane enables associated 
with each of the eight 32-bit data (and corresponding 2-bit token) allowing none, single, 
multiple, or all 32-bit data words to be written in a single cycle.  All data may be written 
with or without tokens.  Tokens may be written without the corresponding data being 
written if all lane enables are deasserted. 
 

Command transactions are arbitrated while reply transactions are not.  Command 
transactions targeted to a device that cannot guarantee space upon receipt are not 
granted in order to guarantee that all transactions inserted on the bus can be removed 
by the target.  It is required that a device issuing a read command can sink replies 
without overflow.   

 

Node Bus Operation.  Packets are passed from device to device around a Node Bus 
channel.  The valid signal is used to differentiate packets from idle cycles.  The Node 
Bus works on the principle that all packet transfers complete in a single cycle and the 
bus is never stalled.  Packets on the Node Bus have priority over packets waiting 
insertion onto the Node Bus.  All inserted packets must wait until a cycle when no valid 
packet already on the Node Bus needs to be passed to the next device.  The following 
paragraphs provide example transactions that occur on the Node Bus. 



Read Command Transaction.  In the example of figure 3.1.2.1-1, a typical read 
command transaction follows the format as follows: 

• Command:  Command of “00” indicates a Read Command. 

• Token Enable:  Tokens enabled 

• Block Size:  Read of two wide words requested. 

• Target ID:  EDRAM is being read 

• Source ID:  ANBI is requesting read (used for the read reply). 

• Address:  The address lines contain the address of the wide word to be read. 

• Data:  Contains the reply wide word address to be used by the slave for the reply 
transaction.  

• Token:  Don’t care for a read command transaction. 

• Lane Enables:  Don’t care for a read command transaction. 

• Valid:  The valid discrete is asserted to indicate a valid Node Bus packet. 

DWORD accesses are not supported by read commands, and entire wide words shall 
be returned during read replies with all lane enables asserted.  It is the requester’s 
responsibility to extract the any desired DWORDS from the returned wide word.   
 

 
 

Figure 3.1.2.1-1 – Example Node Bus Read Command Transaction 
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Read Reply Transaction.  A device inserts its reply transaction(s) corresponding to the 



read command.  In the example of figure 3.1.2.2-1, a typical read reply transaction 
follows the format as follows: 

• Command:  Command of “01” indicates a Read Reply. 

• Block Size:  The Block Size is “00” for the first reply word and “01” for the 
second.  

• Target ID:  Reply is sent back to ANBI (was Source ID during the read 
command transaction). 

• Source ID:  Reply is from EDRAM  

• Address: The address lines contain the wide word read reply address 
contained in the data field of the corresponding read command. 

• Data:  Reply data.  

• Tokens:  Tokens corresponding to reply data  

• Lane Enables:  All lane enables are asserted since all read replies return a 
full wide word 

• Valid:  The valid discrete is asserted to indicate a valid Node bus packet. 
 

 
Figure 3.1.2.2-1 – Example Node bus Read Reply Transaction 
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Write Command Transaction.  In the example of figure 3.1.2.3-1, a typical write 
transaction follows the format as follows: 

• Command:  Command of “11” indicates a Write. 

• Token Enable:  Indicates that tokens should be written along with data 

• Block Size:  Not valid. 

• Target ID:  Write to EDRAM 

• Source ID:  Write from RISC 

• Address:  The address lines contain the address where data should be 
written. 

• Data:  Write data 

• Tokens:  Write tokens 

• Lane Enables:  Indicates that DWORDS and Tokens 4 and 5 are to be 
written 

• Valid:  The valid discrete is asserted to indicate a valid Node bus packets. 
 

 
 

Figure 3.1.2.3-1 – Example Node Bus Write command Transaction 
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Pipelining 

Each Node Bus device shall register packets at the input before being 
processed. 

Packet Insertion 

A packet on a channel input of a device shall be passed to the corresponding 
channel output on the next cycle if the target ID does not match the 
device ID. 

A packet may only be inserted on the channel output of a device if all of the 
following conditions are met: 

• during the previous cycle an idle cycle or a packet destined for the 
device was received at the corresponding channel input 

• the packet is a reply; or the packet is a command and a grant for the 
command transaction has been received from the corresponding 
slave arbiter (See 3.1.10) 

• if the packet is a read command, the device can guarantee that it can 
receive all the read replies generated by the command without loss 

An idle cycle shall be placed on the channel output of the device if no packet is 
output. 

If a bidirectional ring is being used, packets shall be inserted on a channel based 
on a static routing vector (indexed by target ID.) 

Note: if a bidirectional ring is used, zero, one, or two packets may be inserted on 
the same clock cycle (adhering to the insertion rules stated above.) 

Packet Receipt 

A packet on the channel input of a device shall be passed to the device on the 
next cycle (removed from the channel) if the target ID matches the 
device ID. 

Note: if a bidirectional ring is being used, zero, one or two packets may be 
received by the device on the same clock cycle (adhering to the removal 
rule stated above). 

Deadlock Avoidance: To avoid deadlock, each device attached to a Node Bus must 
additionally obey the following requirements: 

In order to execute or complete the execution of any received command, a 
device may not require that a command transaction is inserted into the 
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Node Bus from which it was received (either directly by the device itself, 
or indirectly via another device.) 

In order to execute or complete the execution of any received reply, a device 
may not require that a command or reply is inserted into the Node Bus 
from which it was received (either directly by the device itself, or 
indirectly via another device.) 

Ordering.  The ordering of transactions on the Node Bus shall obey the following rules: 

Between any source/target pair, commands must be processed by the slave 
device in the order in which they were generated by the master device.   

Between any target/source pair, replies must be processed by the master device 
in the order in which they were generated by the slave device.  

Node Bus Cycles.  The Node Bus runs at the system clock rate (reference timing 
diagrams in Figures 3.1.2.1-1 through 3.1.2.3-1).   

Source/Target ID Codes.  The Source & Target ID shall identify the source and 
destination of the Node Bus transaction.  Table 3.1.9 defines the allocation of 
Source/Target IDs.  On replies, devices simply echo the Source ID bits received on the 
request packet.    

 
Source/Target ID Device 

0000 EDRAM Device 
0001 RISC Device 
0010 ANBI Device 
0011 Program Bus/CM Device 
0100 Flash/ROM Device 
0101 Rapid I/O Device 
0110 External Memory Device 
0111 Reserved 
1000 PBUF Device 
1001 Reserved 
1010 Reserved 
1011 Reserved 
1100 Reserved 
1101 Reserved 
1110 Reserved 
1111 PCI Bridge Device 

 
Table 3.1.9 – Node bus Source/Target ID 

 

 



  13

Slave Arbitration 

Each slave shall have an arbiter. 

Each master shall send a request to the corresponding slave arbiter before it 
attempts to insert a command transaction on a channel. 

A master may pre-request for one or more transactions from a slave arbiter 
(make a request and not send a corresponding command transaction for 
an indefinite period of time). 

Each slave shall send a grant to a requesting master if and only if it can 
guarantee to receive another command transaction from the requesting 
master without loss. A grant which has been sent, and for which a 
corresponding command transaction has not yet been received is 
termed an outstanding grant. 

At all times, at least one of the following statements shall be true for each slave: 

o the slave is processing a command transaction or have one or more 
command transactions waiting to be processed (a request 
transaction which has been removed from the bus, but for which the 
execution of the command is not yet complete) 

o for some master, the slave has one more outstanding grant than the 
maximum number of pre-requests the master makes 

o the slave is able to receive at least one more command transaction 
without loss (i.e., able to make a new grant) 

Arbitration Interface and Signal Description.   

Each master device shall interface with a Node Bus slave device using a set of 
request/grant/busy signals (see Table 2-1-4) to the slave device’s arbiter.  
The “req_xxxx” signal represents the request from master device to send 
a command transaction to the slave device.  The “gnt_xxxx” signal 
indicates that the slave device can accept a command transaction from 
the master device.  The “busy_xxx” signal indicates the slave cannot 
accept new requests from the master device.  Since the TA2_SW RISC 
processor is never a slave and the EDRAM used for the testbench 
simulations is never a master, the testbench operation is straightforward. 

Node bus slave arbiters shall accept pulsed requests and issue pulsed grants. 
(i.e., requests and grants held high for 2 or more clocks indicate multiple 
requests and grants).  See figure 3.1.11-2. 

 



 
Figure 3.1.11-2  Pulsed Request / Grant Example 

Node bus slave arbiters shall buffer a non-zero number of requests on each 
request port.  A busy signal shall be generated on that port whenever the 
arbiter will not buffer additional requests. This busy signal shall indicate 
to the requestor that requests made while busy is asserted will be 
ignored.  Note that any request made during the first clock that busy is 
asserted has been ignored and must be reissued after the arbiter de-
asserts busy. 

 

 
 

Figure 3.1.11-3  Request and Busy Signal Example 

  14



  15

 
Appendix II.  Glossary 
 

Term Definition 
Channel A set of connections forming a unidirectional node bus ring  
Command Arbitrated transaction type consisting of read and write 

commands 
Device A source and/or target on a node bus ring 
DWORD A 32-bit value 
Master A node bus device capable of sourcing command 

transactions. 
Node Bus Idle 
Cycle 

Occurs when the valid bit is deasserted on the Node Bus 
connection between two devices. 

Packet The collection of address/data/control information of a 
transaction 

Reply Unarbitrated transaction type consisting of read replies 
Ring A unidirectional or bidirectional, point-to-point cyclic 

connection of node bus devices 
Slave A node bus device capable of sinking command packets  
Source  The device sourcing a transaction 
Target The device sinking a transaction 
Token A 2-bit value associated with a DWORD 
Transaction An end-to-end operation from a source device to a target 

device 
Wide Word 256 bits of data + 16 bits of token 
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Scala
Form

2-bit source registers and a 32-bit target
er the current instruction updates condi-
s, since these instructions never update
pecified, as sh wn in Figure 2.

s

or calculated using a base register ORed
on a 4-byte boundary. Furthermore, the
to as a call instruction. Also, the CCC

l, greater than, greater than or equal, or

function

its 6 bits

bits

diate

et

bits
Chapter 1 - TA2_SW Instruction Set Overview

r Instruction
ats

As shown in Figure 1, the TA2_SW scalar instruction uses a three-operand format to specify two 3
register. For arithmetic/logical instructions using this format, there is also a C bit to indicate wheth
tion codes. However, the C bit indicates signed/unsigned arithmetic for multiply/divide instruction
condition codes by definition. In lieu of a second source r gister, a 16-bit immediate value may be s

Figure 1 Format R for Scalar Register Operations

Figure 2 Format I for Scalar Immediate Operation

The branch instruction formats are shown in Figure 3. The branch target address may be PC-relative
with an offset. In both formats, the offset is in units of words, or 4 bytes, since instructions must be
L bit specifie linkage, that is, whether a return instruction address should be saved in R31, referred
field specifies one of eight branch conditions: always, equal, not equal, less than, less than or equa
overfl w. See the branch and call instruction descriptions for details.

Figure 3 Format B for Branches

opcode rD rA rB

6 bits 5 bits 5 bits 5 bits 4 b

C

opcode rD rA

6 bits 5 bits 5 bits 16 

imme

opcode rA offs

6 bits 3 bits 5 bits 16 

0 L CCC

opcode PC offset

6 bits 3 bits 21 bits

1 L CCC
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rd operations are executed in a morphable arith-
deWord instruction set is largely preserved. As

the general form of scalar instructions. Addi-
odify the execution of the instruction. Figure 5
ng-point, and ideWord register fil s.

al Operations

r File Transfers

o bits, which primarily affects the shift
the merge instruction, these bits specify

 following table:

nt instruction’s execution in most cases.
ck instructions.

s performed on a given data field. The
local to its own data fiel is true, only if
s the rightmost fiel with a condition that

onic

function

6 bits

PP WW

2 bits 2 bits

function
6 bits

PP WW
2 bits 2 bits
WideWord Instruction
Formats

Rather than using a dedicated 256-bit datapath as was designed in DIVA, TA2_SW WideWo
metic cluster which may be configured for WideWord operations. However, the DIVA Wi
shown in Figure 4, “WideWord Arithmetic/Logical Format,” WideWord instructions follow
tional control information is included to manage the data fields of the WideWord, and to m
shows the format for transfers within the WideWord register file and across the scala , floati

Figure 4 Format W for WideWord Arithmetic/Logic

Figure 5 Format T for Wide-Word and Inter-Registe

The control fields are defined as fol ws:

WW (width)
The WW field sets the width of the WideWord operands to eight, sixteen, or thirty-tw
operations and the configuratio of the carry chain for additions and subtractions. For
the condition on which the merge is based. The encoding of these bits is listed in the

C (condition code enable)
The C bit indicates whether condition codes will be updated as a result of the curre
However, the C bit indicates signed/unsigned arithmetic for multiply, pack, and unpa

PP (participation)
The PP field interacts with condition codes to control whether a computation i
participation fiel can specify that a data fiel participate always, only if a condition
the data fiel is the leftmost fiel with a condition that is true, or only if the data fiel i

WW Value Operand Width Assembler Mnem

00 8 bits b
01 16 bits h
10 32 bits w
11 Reserved NA

opcode wrD wrA wrB

6 bits 5 bits 5 bits 5 bits

C

opcode rD rA IA/D

6 bits 5 bits 5 bits 5 bits
T
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icipation mode) register. Refer to
ing table:

g on the function, rD or rA may
truction refers to the WideWord

nding on the function, this index
or rA depending on the direction

Toke bits for each 32 bits of data. This is con-
arithmetic clusters when configure for

ens in the WideWord datapath is that the
tokens of the stream to be preserved for
rand specifie by wrA are written to the
mplementations may ensure token com-
tokens are not subject to participation.

ields of wrD

Load r scalar integer and floating-point loads
to see if the address contents of a load

fetched is retrieved from the load buffer,
e data is fetched from the node memory
pipeline registers to continue the load
address matches that associated with a

y. If not, the current content of the store
by the node interconnect specification),
f the store buffer. If the address of a ST

s also written. If the address of a LD or
re forwarded from the store buffer -- the

nic
is true. The condition that is inspected for participation depends on the value of the PM (part
the architecture document for more details. The encoding of the PP bits is listed in the follow

T (type)
The T bit governs whether the current instruction operates on a vector or scalar. Dependin
specify a WideWord register. In this case, the T bit specifies whether the current transfer ins
register as a whole vector or instead uses IA/D to index a sub-field of the ideWord register.

IA/D

Value to be used as an index when a sub-fiel of a WideWord is involved in a transfer. Depe
fiel may be an immediate or a scalar GPR specifie . Also, IA/D may be coupled with either rD
of the transfer as specified by the function

ns Each entry of the WideWord register fil contains 256 bits of data and 16 bits of token information, 2
sistent with the association of tokens and data in the TA2_SW streaming operations executed in the
streaming mode (refer to the specificatio for the arithmetic cluster). The rationale for including tok
WideWord unit may be involved in processing streams stored in memory, and it is desirable for the
future streaming operations. To support this capability, nominally the tokens associated with the ope
token fiel of the operand specifie by wrD in any WideWord instruction. However, some TA2_SW i
pliance for only WLD and WST instructions. For designs that implement the full token capability,
That is, the tokens of wrA will be written to wrD even if the participation effect masks off all data f

/Store Buffers Some TA2_SWTA2_SW implementations may include 256-bit buffers to improve performance fo
and stores. For such implementations, LD and FLD instructions first interrogate the load buffer(s)
buffer matches bits 0 through 26 of the effective address of the instruction. If so, the 32-bit data to be
thereby avoiding a node interconnect and memory access. If not, the 256-bit WideWord containing th
and loaded into the load buffer, and the appropriate 32-bit subfield is forwarded to the appropriate
operation. Similarly, ST and FST instructions attempt to complete via a store buffer. If the effective
store buffer, the appropriate 32-bit subfiel of the store buffer is written and the lane is marked dirt
buffer is first flushed to memory, with the dirty bits serving as the lane enable signals (as specified
and then the data and address of the ST or FST instruction are then written to the appropriate field o
or FST instruction matches that of a load buffer, the appropriate 32-bit subfield of the load buffer i
FLD instruction matches that of a store buffer, then any 32-bit subfield which are marked as dirty a

PP Value Participation Definition Assembler Mnemo

00 Always participate a
01 Specified by local conditio o
10 Reserved NA
11 Reserved NA
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LDBI instruction to invalidate the load buffer,
n doesn't flus any store buffer -- therefore if the
be forwarded from the store buffer even after a
. The initial TA2_SW implementation contains

y an algebraic comparison of the result to zero;
it labels and semantics as indicated below. Note
ondition code enable bit set. The OV condition

nable bit setting, and is sticky; that is, it is only
call statements. Further, like any user-level spe-
instructions, respectively. When accessed with

it in ger datapath.

ntics to the corresponding condition code of the
corresponding 8-bit datapath is negative. How-
ideWord instruction specifie that operands are
ch bit of a group is updated with the same value

ose register 15) may be updated to reflec excep-
nged in groups of 4 status conditions for each of
: invalid (IV), inexact (IX), overflow (OV), and

ber strictly less than zero.
ber strictly greater than zero.
ber equal to zero.
during execution of an add or
ny other instructions. In prac-
 not equal to the carry out of

that a carry out of bit 0
t instruction. This bit is not
other subfields are fetched from the node memory. The instruction set includes an explicit
forcing a node memory access for the next LD or FLD instruction. Note: the LDBI instructio
address of a subsequent LD or FLD instruction matches that of a store buffer, the data may
LDBI. The instruction set also includes an explicit STBF to flus the store buffer to memory
one 256-bit load buffer and one 256-bit store buffer.

Condition Codes The scalar condition code register, CC, consists of 5 bits. The firs three bits of CC are set b
the other two bits have slightly more peculiar semantics. The condition codes have the CC b
that LT, GT, EQ, and CA condition codes are updated only if the current instruction has its c

code is updated for any scalar add or subtract operation, regardless of the condition code e
cleared when the condition code register is read. They are accessed in conditional branch and
cial-purpose registers, they can be explicitly read and written with the MFSPR and MTSPR
these instructions, the 5-bit CC value is right-justified to the least significant bits of the 32-b

The 32-bit LT, GT, EQ, OV, and CA registers of the WideWord datapath have analogous sema
scalar datapath. For instance, each bit of the WideWord LT register is set if the result of its
ever, there are subtleties due to the configurabilit of the operand sizes. For example, if a W
to be treated as 32-bit values, the condition codes are grouped into eight groups of 4, where ea
to reflect a condition for the group s corresponding 32-bit result.

Similar to condition codes, the WideWord floating-poin status register (FPSR - special-purp
tion conditions for WideWord floating-poin operations. This register is a 32-bit register arra
the eight 32-bit floating-point units in the WideWord datapath. The 4 status conditions are

Condition Code CC bit Description

LT 0 This bit is set when the result represents a num
GT 1 This bit is set when the result represents a num
EQ 2 This bit is set when the result represents a num
OV 3 This bit is set to indicate overfl w has occurred

subtract instruction. This bit is not altered by a
tice, the OV bit is set if the carry out of bit 0 is
bit 1 (assuming big Endian bit labeling).

CA 4 In general, the carry bit (CA) is set to indicate 
occurred during execution of an add or subtrac
altered by any other instructions.
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ey remain set until FPSR is read via an

31
7UD7
underfl w (UD). Refer to the IEEE-754 standard for details. All bits of FPSR are sticky; once set, th
mfspr instruction. The bit arrangement for FPSR is shown below.

IV7
0

IX7 OVIV0 IX0 OV0UD0 IV1 IX1 OV1UD1

FPSR Bit Arrangement
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et
FUNC DESCRIPTION

Branch Instructions
Bx Branch on scalar condition
BAx Branch on all WideWord conditions
BNx Branch on no WideWord condition
CALL x Call on scalar condition
CALLAx Call on all WideWord conditions
CALLNx Call on no WideWord condition

System Instructions
SYS System Call
ICLI Instruction Cache Line Invalidate
RFE Return from Exception
MTATR Move to address translation reg
MFATR Move from address translation reg
MTPR Move to protected reg
MFPR Move from protected reg

FPU Instructions
FABS Floating-point absolute value
FADD Floating-point add
FDIV Floating-point divide
FLD Floating-point load
FMUL Floating-point multiply
FNEG Floating-point negate
FST Floating-point store
FSUB Floating-point subtract
FTI Floating-point to integer conversion
ITF Integer to floating-point co version

Transfer Instructions
MVFF Move FPU to FPU
MVFS Move FPU to scalar
MVFW Move FPU to WW
MVFWI Move FPU to WW, indirect
MVSF Move scalar to FPU
MVSW Move scalar to WW
MVSWI Move scalar to WW, indirect
MVWF Move WW to FPU
MVWFI Move WW to FPU, indirect
MVWS Move WW to scalar
MVWSI Move WW to scalar, indirect
MVWW Move WW to WW
MVWWI Move WW to WW, indirect
Concise List
TABLE 1. TA2_SW Instruction S

FUNC DESCRIPTION FUNC DESCRIPTION
Scalar Instructions WideWord Instructions

ADD Add WADD Add
ADDE Add extended WADDE Add extended
ADDI Add immediate WSUB Subtract
ADDIC Add immediate w/ condition codes WSUBE Subtract extended
SUB Subtract WSUBU Subtract unsigned
SUBE Subtract extended WMULES Multiply even signed
SUBU Subtract unsigned WMULEU Multiply even unsigned
MUL Multiply WMULOS Multiply odd signed
MULU Multiply unsigned WMULOU Multiply odd unsigned
DIV Divide WAND And
DIVU Divide unsigned WNOT Bitwise inversion
AND And WOR Or
ANDI And immediate WXOR Xor
ANDIC And immediate w/ condition codes WSLL Shift left logical
NOT Bitwise inversion WSLLI Shift left logical immediate
OR Or WSRA Shift right arithmetic
ORI Or immediate WSRAI Shift right arithmetic immediate
ORIC Or immediate w/ condition codes WSRL Shift right logical
ORIS Or immediate shifted WSRLI Shift right logical immediate
XOR Xor WLD Load Reg from Mem
XORI Xor immediate WST Store Reg to Mem
XORIC Xor immediate w/ condition codes WFABS Floating-point absolute value
SLL Shift left logical WFADD Floating-point add
SLLI Shift left logical immediate WFMUL Floating-point multiply
SRA Shift right arithmetic WFNEG Floating-point negate
SRAI Shift right arithmetic immediate WFSUB Floating-point subtract
SRL Shift right logical WFTI Floating-point to integer conversion
SRLI Shift right logical immediate WITF Integer to floating-point co version
LD Load Reg from load buffer if possible WPRM Permute
ST Store Reg to store buffer if possible WPRMI Permute immediate
LDBI Load buffer invalidate WMRG Merge based on condition codes
STBF Store buffer flus WPKS Pack using signed arithmetic

WPKU Pack using unsigned arithmetic
Miscellaneous Instructions WUPKL Unpack low-order byte/halfword

MTSPR Move to special-purpose reg
MFSPR Move from special-purpose reg
LOKL Lock Load
LOKS Lock Store
PROBE Probe address to determine locality
ELO Encode leftmost one TKLD Token Load
CLO Clear leftmost one TKST Token Store
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Alph
instr

et

 bits 6 bits
XXX 100000
XXX 100000
XXX 100001
XXX 100001
mediate
mediate
XXX 101000
XXX 101000
mediate
mediate
offset
set
offset
set
offset
set
offset
set
offset
set
offset
set
XXX 001001
XXX 100111
XXX 100111
XXX 001000
XXX 000101
XXX 000101
XXX 000000
XXX 000000
XXX 000111
XXX 000111
offset
XXX 000110
XXX 000110
XXX 000100
abetical list of
uctions

TABLE 2. Encoding of TA2_SW Instruction S

Instruction Format
Encoding

6 bits 5 bits 5 bits 5 bits 5
ADD R 000011 rD rA rB 0X
ADDC R 000011 rD rA rB 1X
ADDE R 000011 rD rA rB 0X
ADDEC R 000011 rD rA rB 1X
ADDI I 100000 rD rA im
ADDIC I 100001 rD rA im
AND R 000011 rD rA rB 0X
ANDC R 000011 rD rA rB 1X
ANDI I 101000 rD rA im
ANDIC I 101001 rD rA im
Bx B 111111 00CCC rA
Bx B 111111 10CCC PC-relative off
BAx B 111100 00CCC rA
BAx B 111100 10CCC PC-relative off
BNx B 111101 00CCC rA
BNx B 111101 10CCC PC-relative off
CALL x B 111111 01CCC rA
CALL x B 111111 11CCC PC-relative off
CALLAx B 111100 01CCC rA
CALLAx B 111100 11CCC PC-relative off
CALLNx B 111101 01CCC rA
CALLNx B 111101 11CCC PC-relative off
CLO R 000011 rD rA 00000 0X
DIV R 000011 00000 rA rB 0X
DIVU R 000011 00000 rA rB 1X
ELO R 000011 rD rA 00000 0X
FABS R 000101 frD frA 00000 0X
FABSC R 000101 frD frA 00000 1X
FADD R 000101 frD frA frB 0X
FADDC R 000101 frD frA frB 1X
FDIV R 000101 frD frA frB 0X
FDIVC R 000101 frD frA frB 1X
FLD I 010000 frD rA
FMUL R 000101 frD frA frB 0X
FMULC R 000101 frD frA frB 1X
FNEG R 000101 frD frA 00000 0X
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XXX 000100
offset
XXX 000001
XXX 000001
XXX 000010
XXX 000010
XXX 000011
XXX 000011
offset
offset
offset
offset
offset
XXX 000010
XXX 000000
XXX 000100
XXX 000011
XXX 000001
XXX 000101
XXX 100110
XXX 100110
XXX 001010
XXX 001001
P10 001000
010 101000
XXX 000110
WW 000100
WW 100100
010 000010
010 100010
WW 000001
WW 100001
WW 000000
WW 100000

XXX 101110
XXX 101110
XXX 101100
XXX 101100
mediate

et

 bits 6 bits

FNEGC R 000101 frD frA 00000 1X
FST I 010001 frD rA
FSUB R 000101 frD frA frB 0X
FSUBC R 000101 frD frA frB 1X
FTI R 000101 frD frA 00000 0X
FTIC R 000101 frD frA 00000 1X
ITF R 000101 frD frA 00000 0X
ITFC R 000101 frD frA 00000 1X
ICLI I 110011 00000 rA
LD I 110000 rD rA
LDBI I 111000 rD rA
LOKL I 110110 rD rA
LOKS I 110111 rD rA
MFATR R 000000 rD atrA 00000 XX
MFPR R 000000 rD prA 00000 XX
MFSPR R 000001 rD sprA 00000 XX
MTATR R 000000 atrD rA 00000 XX
MTPR R 000000 prD rA 00000 XX
MTSPR R 000001 sprD rA 00000 XX
MUL R 000011 00000 rA rB 0X
MULU R 000011 00000 rA rB 1X
MVFF T 000100 frD frA 00000 XX
MVFS T 000100 rD frA 00000 XX
MVFW T 000100 wrD frA ID TP
MVFWI T 000100 wrD frA RID 00
MVSF T 000100 frD rA 00000 XX
MVSW T 000100 wrD rA ID TPP
MVSWI T 000100 wrD rA RID 000
MVWF T 000100 frD wrA IA 00
MVWFI T 000100 frD wrA RIA 00
MVWS T 000100 rD wrA IA 000
MVWSI T 000100 rD wrA RIA 000
MVWW T 000100 wrD wrA IA TPP
MVWWI T 000100 wrD wrA RIA 1PP
NOT R 000011 rD rA 00000 0X
NOTC R 000011 rD rA 00000 1X
OR R 000011 rD rA rB 0X
ORC R 000011 rD rA rB 1X
ORI I 101100 rD rA im

TABLE 2. Encoding of TA2_SW Instruction S

Instruction Format
Encoding

6 bits 5 bits 5 bits 5 bits 5
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mediate
mediate
offset
XX 111111

XXX 000000
XXX 000000
XXX 000010
XXX 000010
XXX 000101
XXX 000101
XXX 000111
XXX 000111
XXX 000001
XXX 000001
XXX 000011
XXX 000011
offset
offset
XXX 100010
XXX 100010
XXX 100011
XXX 100011
XXX 100100

000000
offset
offset
WW 100000
WW 100000
WW 100001
WW 100001
WW 101000
WW 101000
P10 000101
P10 000101
P10 000000
P10 000000
P10 000110
P10 000110
P10 000100
P10 000100

et

 bits 6 bits

ORIC I 101101 rD rA im
ORIS I 101110 rD rA im
PROBE I 110010 rD rA
RFE R 000000 XXXXX XXXXX XXXXX XX
SLL R 000011 rD rA rB 0X
SLLC R 000011 rD rA rB 1X
SLLI R 000011 rD rA shift_amount 0X
SLLIC R 000011 rD rA shift_amount 1X
SRA R 000011 rD rA rB 0X
SRAC R 000011 rD rA rB 1X
SRAI R 000011 rD rA shift_amount 0X
SRAIC R 000011 rD rA shift_amount 1X
SRL R 000011 rD rA rB 0X
SRLC R 000011 rD rA rB 1X
SRLI R 000011 rD rA shift_amount 0X
SRLIC R 000011 rD rA shift_amount 1X
ST I 110001 rD rA
STBF I 111001 rD rA
SUB R 000011 rD rA rB 0X
SUBC R 000011 rD rA rB 1X
SUBE R 000011 rD rA rB 0X
SUBEC R 000011 rD rA rB 1X
SUBU R 000011 rD rA rB 1X
SYS R 000001 code
TKLD I 010010 rD rA
TKST I 010011 rD rA
WADD W 000010 wrD wrA wrB 0PP
WADDC W 000010 wrD wrA wrB 1PP
WADDE W 000010 wrD wrA wrB 0PP
WADDEC W 000010 wrD wrA wrB 1PP
WAND W 000010 wrD wrA wrB 0PP
WANDC W 000010 wrD wrA wrB 1PP
WFABS W 011101 wrD wrA 00000 0P
WFABSC W 011101 wrD wrA 00000 1P
WFADD W 011101 wrD wrA wrB 0P
WFADDC W 011101 wrD wrA wrB 1P
WFMUL W 011101 wrD wrA wrB 0P
WFMULC W 011101 wrD wrA wrB 1P
WFNEG W 011101 wrD wrA 00000 0P
WFNEGC W 011101 wrD wrA 00000 1P

TABLE 2. Encoding of TA2_SW Instruction S

Instruction Format
Encoding

6 bits 5 bits 5 bits 5 bits 5
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P10 000001
P10 000001
P10 000010
P10 000010
P10 000011
P10 000011
offset
WW 101111
WW 100110
WW 100110
WW 100111
WW 100111
WW 101110
WW 101110
WW 101100
WW 101100
P00 001000
P00 001001
WW 001110
WW 001110
WW 000000
WW 000000
WW 000010
WW 000010
WW 000101
WW 000101
WW 000111
WW 000111
WW 000001
WW 000001
WW 000011

et

 bits 6 bits

WFSUB W 011101 wrD wrA wrB 0P
WFSUBC W 011101 wrD wrA wrB 1P
WFTI W 011101 wrD wrA 00000 0P
WFTIC W 011101 wrD wrA 00000 1P
WITF W 011101 wrD wrA 00000 0P
WITFC W 011101 wrD wrA 00000 1P
WLD I 110100 wrD rA
WMRG W 000010 wrD wrA wrB CPP
WMULES W 000010 wrD wrA wrB 0PP
WMULEU W 000010 wrD wrA wrB 1PP
WMULOS W 000010 wrD wrA wrB 0PP
WMULOU W 000010 wrD wrA wrB 1PP
WNOT W 000010 wrD wrA 00000 0PP
WNOTC W 000010 wrD wrA 00000 1PP
WOR W 000010 wrD wrA wrB 0PP
WORC W 000010 wrD wrA wrB 1PP
WPRM W 000010 wrD wrA wrB 0P
WPRMI W 000010 wrD wrA rB 0P
WPKS W 000010 wrD wrA wrB 000
WPKU W 000010 wrD wrA wrB 100
WSLL W 000010 wrD wrA wrB 0PP
WSLLC W 000010 wrD wrA wrB 1PP
WSLLI W 000010 wrD wrA shift_amount 0PP
WSLLIC W 000010 wrD wrA shift_amount 1PP
WSRA W 000010 wrD wrA wrB 0PP
WSRAC W 000010 wrD wrA wrB 1PP
WSRAI W 000010 wrD wrA shift_amount 0PP
WSRAIC W 000010 wrD wrA shift_amount 1PP
WSRL W 000010 wrD wrA wrB 0PP
WSRLC W 000010 wrD wrA wrB 1PP
WSRLI W 000010 wrD wrA shift_amount 0PP

TABLE 2. Encoding of TA2_SW Instruction S

Instruction Format
Encoding

6 bits 5 bits 5 bits 5 bits 5
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WW 000011
offset
WW 100010
WW 100010
WW 100011
WW 100011

XXX 100100
WW 001101
WW 001100
WW 101010
WW 101010

XXX 101010
XXX 101010
mediate
mediate

ision
vision

l execution

et

 bits 6 bits

WSRLIC W 000010 wrD wrA shift_amount 1PP
WST I 110101 wrD rA
WSUB W 000010 wrD wrA wrB 0PP
WSUBC W 000010 wrD wrA wrB 1PP
WSUBE W 000010 wrD wrA wrB 0PP
WSUBEC W 000010 wrD wrA wrB 1PP
WSUBU W 000010 wrD wrA wrB 1X
WUPKH W 000010 wrD wrA 00000 C00
WUPKL W 000010 wrD wrA 00000 C00
WXOR W 000010 wrD wrA wrB 0PP
WXORC W 000010 wrD wrA wrB 1PP
XOR R 000011 rD rA rB 0X
XORC R 000011 rD rA rB 1X
XORI I 101010 rD rA im
XORIC I 101011 rD rA im

TABLE 3.  Special-Purpose Registers
NAME SPR Number DESCRIPTION
CC 0 LT, GT, EQ, OV, and CA bits of scalar processor
HI 1 most significant 32 bits of multiplication result, quotient of d v
LO 2 least significant 32 bits of multiplication result, remainder of d
LT 8 32-bit Less Than register of WideWord Unit
GT 9 32-bit Greater Than register of WideWord Unit
EQ 10 32-bit Equal register of WideWord Unit
CA 11 32-bit Carry register of WideWord Unit
OV 12 32-bit Overfl w register of WideWord Unit
M 13 32-bit WideWord Mask register used in conditional execution
PM 14 5-bit WideWord Participation Mode register used in conditiona
FPSR 15 32-bit WideWord Floating-Point status register

TABLE 2. Encoding of TA2_SW Instruction S

Instruction Format
Encoding

6 bits 5 bits 5 bits 5 bits 5
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stored value of PC)
TABLE 4.  Protected Registers
NAME PR Number DESCRIPTION

PSW 0 32-bit processor status word
SSW 1 Stored value of PSW, used in exception handling
EID 2 16-bit environment identifier r gister
FADR 3 32-bit address of faulting instruction (stored value of PC)
SCR0 - SCR3 4 - 7 32-bit supervisor scratch registers
ESW 8 32-bit exception source word
EMR 9 32-bit exception mask register
ESR 10 32-bit exception set register
ERR 11 32-bit exception reset register
MADR 12 32-bit faulting memory address
TIMER 13 32-bit programmable delay timer
RCL 14 Low order 32 bits of real-time clock
RCH 15 High order 32 bits of real-time clock
NADR 16 32-bit address of instruction following faulting instruction (

TABLE 5.  Address Translation Registers
NAME ATR Number DESCRIPTION

SB0 - SB7 0 - 7 32-bit local segment base registers
SL0 - SL7 8 - 15 32-bit local segment limit registers
GVB0 - GVB3 16 - 19 32-bit global segment virtual base registers
GL0 - GL3 20 - 23 32-bit global segment limit registers
GPB0 - GPB3 24 - 27 32-bit global segment physical base registers
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Nota ling, meaning that bit/byte 0 is the most

h stage of the pipeline.

Prec ll operators on the same line have equal
hem.

Meaning

 at effective address EA

e

ister X
al-purpose register X

s

ators
Chapter 2 - Instruction Descriptions

tion This chapter gives detailed individual instruction descriptions. We use Big-Endian byte and bit labe
significant. Other co ventions are listed in the table below.

Note that the IADR of an instruction is equivalent to the PC value while the instruction is in the fetc

edence The following table gives the rules of precedence and associativity for the pseudocode operators. A
precedence, and all operators on a given line have higher precedence than those on the lines below t

TABLE 6.  Instruction Glossary

Symbol Meaning Symbol

Assignment MEM[EA] Memory contents

Bit string concatenation 0xvalue Hexadecimal valu

xy x replicated y times 0bvalue Binary value

xy, z Selection of bits y through z from x frX Floating-point reg
x bitwise ANDed with y (rX) Contents of gener

x bitwise ORed with y PC Program counter

x bitwise exclusive ORed with y IADR Instruction addres

bitwise inversion of x

A B←

A B||

x y∧

x y∨

x y⊕

x¬

TABLE 7. Precedence of Pseudocode Oper
Operator Associativity

x[n] left to right
xy, z left to right
xy left to right

right to left
left to right

+, - left to right
|| left to right

=, !=, <, <=, >, >= left to right
left to right
left to right
none

¬
, ÷×

,⊕ ∧
∨

←
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100000

25 26 31
addx - Add

addx - Add
Scalar Unit

add rD, rA, rB (C = 0)
addc rD, rA, rB (C = 1)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ, CA
• Scalar condition code OV is set if the operation causes overfl w.

000011 rD rA rB C

0 5 6 10 11 15 16 20 21 22

rD rA( ) rB( )+←
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100001

25 26 31
addex - Add Extended

addex - Add Extended
Scalar Unit

adde rD, rA, rB (C = 0)
addec rD, rA, rB (C = 1)

The sum (rA) + (rB), using the carry bit CA as the carry in, is placed into rD.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ, CA
• Scalar condition code OV is set if the operation causes overfl w.

000011 rD rA rB C

0 5 6 10 11 15 16 20 21 22

rD rA( ) rB( ) CA+ +←
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31
addi - Add Immediate

addi - Add Immediate
Scalar Unit

addi rD, rA, IMM

The sum (rA) + IMM (sign-extended to form a 32-bit value) is placed into rD.

Other registers altered:

• Scalar condition code OV is set if the operation causes overfl w.

0 5 6 10 11 15 16

100000 rD rA IMM

rD rA( ) IMM 0( )16
IMM||( )+←
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31
addic - Add Immediate Recording Condition Code

addic - Add Immediate Recording Condition Code
Scalar Unit

addic rD, rA, IMM

The sum (rA) + IMM (sign-extended to form a 32-bit value) is placed into rD.

Other registers altered:

• Scalar condition code registers: LT, GT, EQ, CA
• Scalar condition code OV is set if the operation causes overfl w.

0 5 6 10 11 15 16

100001 rD rA IMM

rD rA( ) IMM 0( )16
IMM||( )+←
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101000

25 26 31
andx - AND

andx - AND
Scalar Unit

and rD, rA, rB (C = 0)
andc rD, rA, rB (C = 1)

The contents of rA are ANDed with rB, and the result is placed into rD.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ

000011 rD rA rB C

0 5 6 10 11 15 16 20 21 22

rD rA( ) rB( )∧←
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ult is placed into rD.

31
andi - AND Immediate

andi - AND Immediate
Scalar Unit

andi rD, rA, IMM

The contents of rA are ANDed with IMM (prepended with zeros to form a 32-bit value), and the res

Other registers altered:

• None

0 5 6 10 11 15 16

101000 rD rA IMM

rD rA( ) 016
IMM||( )∧←
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s

ult is placed into rD.

31
andic - AND Immediate Recording Condition Codes

andic - AND Immediate Recording Condition Code
Scalar Unit

andic rD, rA, IMM

The contents of rA are ANDed with IMM (prepended with zeros to form a 32-bit value), and the res

Other registers altered:

• Scalar condition code registers: LT, GT, EQ

0 5 6 10 11 15 16

101001 rD rA IMM

rD rA( ) 016
IMM||( )∧←
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er-relative format, the target address is
s is formed by adding the offset to the
ted left two bits and sign-extended. Fur-
mat so that a proper instruction-aligned

31

et

31
bx- Branch

bx- Branch

bx rA, offset (register-relative format)

bx offset (PC-relative format)

if scalar condition indicated by CCC

if PC-relative format

else

This branch instruction is conditional upon the scalar condition specified by CCC. For the regist
formed by ORing the offset with the contents of rA. For the PC-relative format, the target addres
instruction address. In both cases, the offset is considered to be a signed instruction count, so it is shif
thermore, the least two significant bits of the contents of rA are ignored in the register-relative for
address results. The next instruction is always executed (one delay slot).

CCC
Register-Relative

Mnemonic
PC-Relative
Mnemonic

000 b rA, offset b offset

001 beq rA, offset beq offset

010 bne rA, offset bne offset

011 blt rA, offset blt offset

100 ble rA, offset ble offset

0 5 6 10 11 15 16

111111 rA offs0 0 CCC

7 8

0 5 6 10 117 8

111111 offset1 0 CCC

PC IADR offset0( )9
offset 00|| ||( )+←

PC rA( ) 0xFFFFFFFC∧( ) offset0( )14
offset 00|| ||( )∨←
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bx- Branch

Other registers altered:

• None

The ret instruction is a simplified mnemonic fo b r31, 0.

101 bgt rA, offset bgt offset

110 bge rA, offset bge offset

111 bov rA, offset bov offset

CCC
Register-Relative

Mnemonic
PC-Relative
Mnemonic



 Page 25 of 136

ord datapaths. For the register-relative
format, the target address is formed by

uction count, so it is shifted left two bits
register-relative format so that a proper

31

et

31
bax- Branch on All

bax- Branch on All

bax rA, offset (register-relative format)

bax offset (PC-relative format)

if condition indicated by CCC is true for all WideWord datapaths

if PC-relative format

else

This conditional branch instruction succeeds if the condition specifie by CCC is true for all WideW
format, the target address is formed by ORing the offset with the contents of rA. For the PC-relative
adding the offset to the instruction address. In both cases, the offset is considered to be a signed instr
and sign-extended. Furthermore, the least two significan bits of the contents of rA are ignored in the
instruction-aligned address results. The next instruction is always executed (one delay slot).

CCC
Register-Relative

Mnemonic
PC-Relative
Mnemonic

000 b rA, offset b offset

001 baeq rA, offset baeq offset

010 bane rA, offset bane offset

011 balt rA, offset balt offset

100 bale rA, offset bale offset

0 5 6 10 11 15 16

111100 rA offs0 0 CCC

7 8

0 5 6 10 117 8

111100 offset1 0 CCC

PC IADR offset0( )9
offset 00|| ||( )+←

PC rA( ) 0xFFFFFFFC∧( ) offset0( )14
offset 00|| ||( )∨←
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bax- Branch on All

Other registers altered:

• None

101 bagt rA, offset bagt offset

110 bage rA, offset bage offset

111 baov rA, offset baov offset

CCC
Register-Relative

Mnemonic
PC-Relative
Mnemonic
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ord datapaths. For the register-relative
format, the target address is formed by

uction count, so it is shifted left two bits
register-relative format so that a proper

31

et

31
bnx- Branch on None

bnx- Branch on None

bnx rA, offset (register-relative format)

bnx offset (PC-relative format)

if condition indicated by CCC is false for all WideWord datapaths

if PC-relative format

else

This conditional branch instruction succeeds if the condition specifie by CCC is false for all WideW
format, the target address is formed by ORing the offset with the contents of rA. For the PC-relative
adding the offset to the instruction address. In both cases, the offset is considered to be a signed instr
and sign-extended. Furthermore, the least two significan bits of the contents of rA are ignored in the
instruction-aligned address results. The next instruction is always executed (one delay slot).

CCC
Register-Relative

Mnemonic
PC-Relative
Mnemonic

000 b rA, offset b offset

001 bneq rA, offset bneq offset

010 bnne rA, offset bnne offset

011 bnlt rA, offset bnlt offset

100 bnle rA, offset bnle offset

0 5 6 10 11 15 16

111101 rA offs0 0 CCC

7 8

0 5 6 10 117 8

111101 offset1 0 CCC

PC IADR offset0( )9
offset 00|| ||( )+←

PC rA( ) 0xFFFFFFFC∧( ) offset0( )14
offset 00|| ||( )∨←
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bnx- Branch on None

Other registers altered:

• None

101 bngt rA, offset bngt offset

110 bnge rA, offset bnge offset

111 bnov rA, offset bnov offset

CCC
Register-Relative

Mnemonic
PC-Relative
Mnemonic
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tive format, the target address is formed
d by adding the offset to the instruction
o bits and sign-extended. Furthermore,

at a proper instruction-aligned address
ction following the delay slot is placed

31

et

31
callx- Call

callx- Call

callx rA, offset (register-relative format)

callx offset (PC-relative format)

if scalar condition indicated by CCC

if PC-relative format

else

This call instruction is conditional upon the scalar condition specifie by CCC. For the register-rela
by ORing the offset with the contents of rA. For the PC-relative format, the target address is forme
address. In both cases, the offset is considered to be a signed instruction count, so it is shifted left tw
the least two significant bits of the contents of rA are ignored in the register-relative format so th
results. The next instruction is always executed (one delay slot). The effective address of the instru
into r31.

CCC
Register-Relative

Mnemonic
PC-Relative
Mnemonic

000 call rA, offset call offset

001 calleq rA, offset calleq offset

010 callne rA, offset callne offset

0 5 6 10 11 15 16

111111 rA offs0 1 CCC

7 8

0 5 6 10 117 8

111111 offset1 1 CCC

r 31 IADR 8+←

PC IADR offset0( )9
offset 00|| ||( )+←

PC rA( ) 0xFFFFFFFC∧( ) offset0( )14
offset 00|| ||( )∨←
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callx- Call

Other registers altered:

• None

011 calllt rA, offset calllt offset

100 callle rA, offset callle offset

101 callgt rA, offset callgt offset

110 callge rA, offset callge offset

111 callov rA, offset callov offset

CCC
Register-Relative

Mnemonic
PC-Relative
Mnemonic
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datapaths. For the register-relative for-
format, the target address is formed by
uction count, so it is shifted left two bits
register-relative format so that a proper

ective address of the instruction follow-

31

et

31
callax- Call on All

callax- Call on All

callax rA, offset (register-relative format)

callax offset (PC-relative format)

if condition indicated by CCC is true for all WideWord datapaths

if PC-relative format

else

This conditional call instruction succeeds if the condition specifie by CCC is true for all WideWord
mat, the target address is formed by ORing the offset with the contents of rA. For the PC-relative
adding the offset to the instruction address. In both cases, the offset is considered to be a signed instr
and sign-extended. Furthermore, the least two significan bits of the contents of rA are ignored in the
instruction-aligned address results. The next instruction is always executed (one delay slot). The eff
ing the delay slot is placed into r31.

CCC
Register-Relative

Mnemonic
PC-Relative
Mnemonic

000 call rA, offset call offset

001 callaeq rA, offset callaeq offset

010 callane rA, offset callane offset

0 5 6 10 11 15 16

111100 rA offs0 1 CCC

7 8

0 5 6 10 117 8

111100 offset1 1 CCC

r 31 IADR 8+←

PC IADR offset0( )9
offset 00|| ||( )+←

PC rA( ) 0xFFFFFFFC∧( ) offset0( )14
offset 00|| ||( )∨←
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callax- Call on All

Other registers altered:

None

011 callalt rA, offset callalt offset

100 callale rA, offset callale offset

101 callagt rA, offset callagt offset

110 callage rA, offset callage offset

111 callaov rA, offset callaov offset

CCC
Register-Relative

Mnemonic
PC-Relative
Mnemonic
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d datapaths. For the register-relative for-
format, the target address is formed by
uction count, so it is shifted left two bits
register-relative format so that a proper

ective address of the instruction follow-

31

et

31
callnx- Call on None

callnx- Call on None

callnx rA, offset (register-relative format)

callnx offset (PC-relative format)

if condition indicated by CCC is false for all WideWord datapaths

if PC-relative format

else

This conditional call instruction succeeds if the condition specifie by CCC is false for all WideWor
mat, the target address is formed by ORing the offset with the contents of rA. For the PC-relative
adding the offset to the instruction address. In both cases, the offset is considered to be a signed instr
and sign-extended. Furthermore, the least two significan bits of the contents of rA are ignored in the
instruction-aligned address results. The next instruction is always executed (one delay slot). The eff
ing the delay slot is placed into r31.

CCC
Register-Relative

Mnemonic
PC-Relative
Mnemonic

000 call rA, offset call offset

001 callneq rA, offset callneq offset

010 callnne rA, offset callnne offset

0 5 6 10 11 15 16

111101 rA offs0 1 CCC

7 8

0 5 6 10 117 8

111101 offset1 1 CCC

r 31 IADR 8+←

PC IADR offset0( )9
offset 00|| ||( )+←

PC rA( ) 0xFFFFFFFC∧( ) offset0( )14
offset 00|| ||( )∨←
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callnx- Call on None

Other registers altered:

None

011 callnlt rA, offset callnlt offset

100 callnle rA, offset callnle offset

101 callngt rA, offset callngt offset

110 callnge rA, offset callnge offset

111 callnov rA, offset callnov offset

CCC
Register-Relative

Mnemonic
PC-Relative
Mnemonic
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his bit but retaining the other bits is then

001001

25 26 31
clox - Clear Leftmost One

clox - Clear Leftmost One
Scalar Unit

clo rD, rA (C = 0)
cloc rD, rA (C = 1)

for i = 31 to 0

if (rA)i

The contents of rA are searched to fin the leftmost bit that is a one. The resulting value of clearing t
stored in rD.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ

000011 rD rA 00000 C

0 5 6 10 11 15 16 20 21 22

tmp i←

rD rA( ) 1tmp 0 131 tmp–|| ||( )∧←
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ndition codes are updated as a result of
d the remainder word is loaded into spe-
ount of scheduling.

100111

25 26 31
div - Divide

div - Divide
Scalar Unit

div rA, rB

The contents of rA are divided by the contents of rB, treating both operands as signed values. No co
this operation. When the operation completes, the quotient word is loaded into special register HI, an
cial register LO. This operation requires 12 clock cycles in the worst case and thus requires some am

Other registers altered:

• None

000011 00000 rA rB 0

0 5 6 10 11 15 16 20 21 22

HI rA( ) rB( )÷←

LO rA( )mod rB( )←
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condition codes are updated as a result
I, and the remainder word is loaded into
e amount of scheduling.

100111

25 26 31
divu - Divide Unsigned

divu - Divide Unsigned
Scalar Unit

divu rA, rB

The contents of rA are divided by the contents of rB, treating both operands as unsigned values. No
of this operation. When the operation completes, the quotient word is loaded into special register H
special register LO. This operation requires 12 clock cycles in the worst case and thus requires som

Other registers altered:

• None

000011 00000 rA rB 1

0 5 6 10 11 15 16 20 21 22

HI rA( ) rB( )÷←

LO rA( )mod rB( )←



 Page 38 of 136

red in rD. If no bit of the contents of rA

001000

25 26 31
elo - Encode Leftmost One

elo - Encode Leftmost One
Scalar Unit

elo rD, rA

for i = 31 to 0

if (rA)i

The contents of rA are searched to fin the leftmost bit that is a one. The index of this bit is then sto
is a one, the value 0xFFFFFFFF is stored in rD.

Other registers altered:

• None

000011 rD rA 00000 0

0 5 6 10 11 15 16 20 21 22

tmp 0xFFFFFFFF←

tmp i←

rD tmp←
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000101X

25 26 31
fabsx - Floating-Point Absolute Value

fabsx - Floating-Point Absolute Value
Floating-Point Unit

fabs frD, frA (C = 0)
fabsc frD, frA (C = 1)

The contents of frA with bit 0, the sign bit, set to one are placed in frD.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ
• FPSR may also be updated if any floating-point xceptions occur.

000101 frD frA 00000 XXXC

0 5 6 10 11 15 16 20 21 22
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d frB is placed into frD. Floating-point

000000X

25 26 31
faddx - Floating-Point Add

faddx - Floating-Point Add
Floating-Point Unit

fadd frD, frA, frB (C = 0)
faddc frD, frA, frB (C = 1)

 (using floating-point arithmetic

Using floating point arithmetic, the sum of the single-precision floating-point contents of frA an
exceptions may be triggered by this operation.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ
• FPSR may also be updated if any floating-point xceptions occur.

000101 frD frA frB XXXC

0 5 6 10 11 15 16 20 21 22

frD frA( ) frB( )+←
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d frB is placed into frD. Floating-point

000111X

25 26 31
fdivx - Floating-Point Divide

fdivx - Floating-Point Divide
Floating-Point Unit

fdiv frD, frA, frB (C = 0)
fdivc frD, frA, frB (C = 1)

 (using floating-point arithmetic

Using floatin point arithmetic, the quotient of the single-precision floating-poin contents of frA an
exceptions may be triggered by this operation.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ
• FPSR may also be updated if any floating-point xceptions occur.

000101 frD frA frB XXXC

0 5 6 10 11 15 16 20 21 22

frD frA( ) frB( )÷←
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The 32-bit value at the memory location
oaded into frD. If the implementation is
of EA match the address contents of the

31

t

fld - Load Floating-Point Register

fld - Load Floating-Point Register
Floating-Point Unit

fld frD, rA, offset

The 16-bit offset is sign-extended and added to the contents of rA to form the effective address EA.
specified by EA (ignoring the least two significant bits to ensure a 32-bit aligned address) is then l
equipped with a load buffer, this instruction loads the value from the load buffer if bits 0 through 26
load buffer.

Other registers altered:

• None

0 5 6 10 11 15 16

010000 frD rA offse

EA 0xFFFFFFFC rA( ) offset0( )16
offset||( )+( )∧←

frD MEM[EA]←
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d frB is placed into frD. Floating-point

000110X

25 26 31
fmulx - Floating-Point Multiply

fmulx - Floating-Point Multiply
Floating-Point Unit

fmul frD, frA, frB  (C = 0)
fmulc frD, frA, frB (C = 1)

 (using floating-point arithmetic

Using floating point arithmetic, the product of the single-precision floating-point contents of frA an
exceptions may be triggered by this operation.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ
• FPSR may also be updated if any floating-point xceptions occur.

000101 frD frA frB XXXC

0 5 6 10 11 15 16 20 21 22

frD frA( ) frB( )×←
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000100X

25 26 31
fnegx - Floating-Point Negate

fnegx - Floating-Point Negate
Floating-Point Unit

fneg frD, frA (C = 0)
fnegc frD, frA (C = 1)

The contents of frA with bit 0, the sign bit, inverted are placed in frD.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ
• FPSR may also be updated if any floating-point xceptions occur.

000101 frD frA 00000 XXXC

0 5 6 10 11 15 16 20 21 22
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The 32-bit contents of frD are stored at
gned address). If the implementation is
of the store buffer, causing a flus of the
.

31

t

fst - Store Floating-Point Register

fst - Store Floating-Point Register
Floating-Point Unit

fst frD, rA, offset

The 16-bit offset is sign-extended and added to the contents of rA to form the effective address EA.
the memory location specified by EA (ignoring the least two significant bits to ensure a 32-bit ali
equipped with a store buffer, this instruction writes the value to be stored to the appropriate subfiel
prior buffer contents if bits 0 through 26 of EA do not match the address contents of the store buffer

Other registers altered:

• None

0 5 6 10 11 15 16

010001 frD rA offse

EA 0xFFFFFFFC rA( ) offset0( )16
offset||( )+( )∧←

MEM[EA] frD←
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nd frB is placed into frD. Floating-point

000001X

25 26 31
fsubx - Floating-Point Subtract

fsubx - Floating-Point Subtract
Floating-Point Unit

fsub frD, frA, frB (C = 0)
fsubc frD, frA, frB (C = 1)

 (using floating-point arithmetic

Using floatin point arithmetic, the difference of the single-precision floating-poin contents of frA a
exceptions may be triggered by this operation.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ
• FPSR may also be updated if any floating-point xceptions occur.

000101 frD frA frB XXXC

0 5 6 10 11 15 16 20 21 22

frD frA( ) frB( )–←
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s placed into frD. Floating-point excep-

000010X

25 26 31
ftix - Floating-Point to Integer

ftix - Floating-Point to Integer
Floating-Point Unit

fti frD, frA (C = 0)
ftic frD, frA (C = 1)

 (assuming floating-point input operand

The single-precision floating-poin contents of frA are converted to a 32-bit integer, and the result i
tions may be triggered by this operation.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ
• FPSR may also be updated if any floating-point xceptions occur.

000101 frD frA 00000 XXXC

0 5 6 10 11 15 16 20 21 22

frD int frA( )( )←



 Page 48 of 136

result is placed into frD. Floating-point

000011X

25 26 31
itfx - Integer to Floating-Point

itfx - Integer to Floating-Point
Floating-Point Unit

itf frD, frA (C = 0)
itfc frD, frA (C = 1)

 (assuming integer input operand)

The integer contents of frA are converted to a 32-bit single-precision floating-poin number, and the
exceptions may be triggered by this operation.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ
• FPSR may also be updated if any floating-point xceptions occur.

000101 frD frA 00000 XXXC

0 5 6 10 11 15 16 20 21 22

frD fp frA( )( )←
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If the EA is contained in the instruction

31

t

icli - Instruction Cache Line Invalidate

icli - Instruction Cache Line Invalidate

icli rA, offset

The 16-bit offset is sign-extended and added to the contents of rA to form the effective address EA.
cache, the cache line containing that address is invalidated.

Other registers altered:

• None

0 5 6 10 11 15 16

110011 00000 rA offse

EA rA( ) offset0( )16
offset||( )+←
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The 32-bit word at the memory location
oaded into rD. If the implementation is
of EA match the address contents of the

31

t

ld - Load General-Purpose Register

ld - Load General-Purpose Register
Scalar Unit

ld rD, rA, offset

The 16-bit offset is sign-extended and added to the contents of rA to form the effective address EA.
specified by EA (ignoring the least two significant bits to ensure a 32-bit aligned address) is then l
equipped with a load buffer, this instruction loads the value from the load buffer if bits 0 through 26
load buffer.

Other registers altered:

• None

0 5 6 10 11 15 16

110000 rD rA offse

EA 0xFFFFFFFC rA( ) offset0( )16
offset||( )+( )∧←

rD MEM[EA]←



 Page 51 of 136

load buffer in the memory stage of the
rD, rA, and offset field are ignored in

31

t

ldbi - Load Buffer Invalidate

ldbi - Load Buffer Invalidate
Scalar Unit

ldbi rD, rA, offset

If the implementation is equipped with a load buffer, this instruction invalidates the contents of the
pipeline, which forces the next succeeding load instruction to fetch data directly from memory. The
the current implementation but designated for potential future use.

Other registers altered:

None

0 5 6 10 11 15 16

111000 rD rA offse



 Page 52 of 136

The 32-bit word at the memory location
oaded into rD. The hardware lock bit is

31

t

lokl - Lock Load

lokl - Lock Load
Scalar Unit

lokl rD, rA, offset

The 16-bit offset is sign-extended and added to the contents of rA to form the effective address EA.
specified by EA (ignoring the least two significant bits to ensure a 32-bit aligned address) is then l
also set and remains set until a loks instruction is executed or an exception occurs.

Other registers altered:

• None

0 5 6 10 11 15 16

110110 rD rA offse

EA 0xFFFFFFFC rA( ) offset0( )16
offset||( )+( )∧←

rD MEM[EA]←

LOCK 1←
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The 32-bit word contents of rD are con-
o ensure a 32-bit aligned address). The
ruction. If an exception occurs between
operation of loks is undefine when the

31

t

loks - Lock Store

loks - Lock Store
Scalar Unit

loks rD, rA, offset

if (LOCK = 1)

The 16-bit offset is sign-extended and added to the contents of rA to form the effective address EA.
ditionally stored at the memory location specified by EA (ignoring the least two significant bits t
success or failure of the store operation is indicated by the contents of rD after execution of the inst
the last lokl and this loks instruction, the store is inhibited from taking place and the loks fails. The
address is different from the address used in the last lokl.

Other registers altered:

• None

0 5 6 10 11 15 16

110111 rD rA offse

EA 0xFFFFFFFC rA( ) offset0( )16
offset||( )+( )∧←

MEM[EA] rD←

rD LOCK
32←

LOCK 0←
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registers and their encoding is found in

000010

25 26 31
mfatr - Move from Address Translation Register

mfatr - Move from Address Translation Register
Scalar Unit

mfatr rD, atrA

The contents of address translation register atrA are stored in rD. A list of the address translation
Table 5. This instruction may be executed only in supervisor mode.

Other registers altered:

• None

000000 rD atrA 00000 0

0 5 6 10 11 15 16 20 21 22

rD atrA( )←
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coding is found in Table 4. This instruc-

000000

25 26 31
mfpr - Move from Protected Register

mfpr - Move from Protected Register
Scalar Unit

mfpr rD, prA

The contents of protected register prA are stored in rD. A list of the protected registers and their en
tion may be executed only in supervisor mode.

Other registers altered:

• None

000000 rD prA 00000 0

0 5 6 10 11 15 16 20 21 22

rD prA( )←
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 and their encoding is found in Table 3.

000100

25 26 31
mfspr - Move from Special-Purpose Register

mfspr - Move from Special-Purpose Register
Scalar Unit

mfspr rD, sprA

The contents of special-purpose register sprA are stored in rD. A list of the special-purpose registers

Other registers altered:

• None

000001 rD sprA 00000 0

0 5 6 10 11 15 16 20 21 22

rD sprA( )←
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he address translation registers and their

000011

25 26 31
mtatr - Move to Address Translation Register

mtatr - Move to Address Translation Register
Scalar Unit

mtatr atrD, rA

The contents of general-purpose register rA are stored in address translation register atrD. A list of t
encoding is found in Table 5. This instruction may be executed only in supervisor mode.

Other registers altered:

• None

000000 atrD rA 00000 0

0 5 6 10 11 15 16 20 21 22

atrD rA( )←
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ted registers and their encoding is found

000001

25 26 31
mtpr - Move to Protected Register

mtpr - Move to Protected Register
Scalar Unit

mtpr prD, rA

The contents of general-purpose register rA are stored in protected register prD. A list of the protec
in Table 4. This instruction may be executed only in supervisor mode.

Other registers altered:

• None

000000 prD rA 00000 0

0 5 6 10 11 15 16 20 21 22

prD rA( )←
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the special-purpose registers and their

000101

25 26 31
mtspr - Move to Special-Purpose Register

mtspr - Move to Special-Purpose Register
Scalar Unit

mtspr sprD, rA

The contents of general-purpose register rA are stored in special-purpose register sprD. A list of
encoding is found in Table 3.

Other registers altered:

• None

000001 sprD rA 00000 0

0 5 6 10 11 15 16 20 21 22

sprD rA( )←
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condition codes are updated as a result
into special register LO, and the high-

s some amount of scheduling.

100110

25 26 31
mul - Multiply

mul - Multiply
Scalar Unit

mul rA, rB

The contents of rA are multiplied by the contents of rB, treating both operands as signed values. No
of this operation. When the operation completes, the low-order word of the double result is loaded
order word is loaded into special register HI. This operation requires 4 clock cycles and thus require

Other registers altered:

• None

000011 00000 rA rB 0

0 5 6 10 11 15 16 20 21 22

LO rA( ) rB( )×( )32, 63←

HI rA( ) rB( )×( )0, 31←
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o condition codes are updated as a result
into special register LO, and the high-

s some amount of scheduling.

100110

25 26 31
mulu - Multiply Unsigned

mulu - Multiply Unsigned
Scalar Unit

mulu rA, rB

The contents of rA are multiplied by the contents of rB, treating both operands as unsigned values. N
of this operation. When the operation completes, the low-order word of the double result is loaded
order word is loaded into special register HI. This operation requires 4 clock cycles and thus require

Other registers altered:

• None

000011 00000 rA rB 1

0 5 6 10 11 15 16 20 21 22

LO rA( ) rB( )×( )32, 63←

HI rA( ) rB( )×( )0, 31←
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001010X

25 26 31
mvff - Move from Floating-Point to Floating-Point

mvff - Move from Floating-Point to Floating-Point

mvff frD, frA

The 32-bit contents of frA are transferred to frD.

Other registers altered:

• None

000100 frD frA 00000 XXXX

0 5 6 10 11 15 16 20 21 22

frD frA( )←
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001001X

25 26 31
mvfs - Move from Floating-Point to Scalar

mvfs - Move from Floating-Point to Scalar

mvfs rD, frA

The 32-bit contents of frA are transferred to rD.

Other registers altered:

• None

000100 rD frA 00000 XXXX

0 5 6 10 11 15 16 20 21 22

rD frA( )←
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te index. (Although a word index would
e proper alignment, the least significant
is transferred to wrD, subject to the par-

0010000

25 26 31
mvfwx - Move from Floating-Point to WideWord

mvfwx - Move from Floating-Point to WideWord

mvfw wrD, frA, index (T = 0)
mvfwrp wrD, frA (T = 1)

if (T = 0)

else

for i = 0 to 224 by 32

If T=0, the contents of frA are transferred to a subfiel of wrD, starting at the byte specifie by the by
be more straightforward, a byte index is used to be consistent with the mvsw instruction.) To ensur
bits of the index are ignored. If T=1, the contents of frA are replicated to form a 256-bit value which
ticipation mode specified by P . The token field of wrD is undefined for this operatio

Other registers altered:

• None

000100 wrD frA index PP1T

0 5 6 10 11 15 16 20 21 22

base index 0b11100∧←

wrDbase 8× base 8×( ) 31+, frA( )←

wrDi i 31+, frA( )←
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irect

er bit contents of rB. (Although a word
n.) To ensure proper alignment, the least

1010000

25 26 31
mvfwi - Move from Floating-Point to WideWord Indirect

mvfwi - Move from Floating-Point to WideWord Ind

mvfwi wrD, frA, rB

The contents of frA are transferred to a subfiel of wrD, starting at the byte specifie by the low-ord
index would be more straightforward, a byte index is used to be consistent with the mvswi instructio
significant bits of the ind x are ignored. The token field of wrD is undefined for this operatio

Other registers altered:

• None

000100 wrD frA rB 0010

0 5 6 10 11 15 16 20 21 22

base rB( )27 31, 0b11100∧←

wrDbase 8× base 8×( ) 31+, frA( )←
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000110X

25 26 31
mvsf - Move from Scalar to Floating-Point

mvsf - Move from Scalar to Floating-Point

mvsf frD, rA

The 32-bit contents of rA are transferred to frD.

Other registers altered:

• None

000100 frD rA 00000 XXXX

0 5 6 10 11 15 16 20 21 22

frD rA( )←
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yte specifie by the byte index. Depend-
to ensure proper alignment. If T=1, the
ipation mode specifie by PP. The token

000100W

25 26 31
mvswx - Move from Scalar to WideWord

mvswx - Move from Scalar to WideWord

mvsww wrD, rA, index (T = 0)
mvswrpw wrD, rA (T = 1)

Variable values in the following equations are as follows:

if (T = 0)

else

for i = 0 to (256 - size) by size

If T=0, some portion or all of the contents of rA are transferred to a subfiel of wrD, starting at the b
ing on the size of the data to be transferred, the least significant bits of the index may be ignored
contents of rA are replicated to form a 256-bit value which is transferred to wrD, subject to the partic
field of wrD is undefined for this operatio

Other registers altered:

• None

WW Value size mask

00 8 0b11111
01 16 0b11110
10 32 0b11100

000100 wrD rA index PPWT

0 5 6 10 11 15 16 20 21 22

base index mask∧←

wrDbase 8× base 8×( ) size 1–( )+, rA( ) 32 size–( ) 31,←

wrDi i size 1–( )+, rA( ) 32 size–( ) 31,←
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ecifie by the low-order bit contents of
may be ignored to ensure proper align-

100100W

25 26 31
mvswi - Move from Scalar to WideWord Indirect

mvswi - Move from Scalar to WideWord Indirect

mvswiw wrD, rA, rB

Variable values in the following equations are as follows:

Some portion or all of the contents of rA are transferred to a subfiel of wrD, starting at the byte sp
rB. Depending on the size of the data to be transferred, the least significan bits of the contents of rB
ment. The token field of wrD is undefined for this operatio

Other registers altered:

• None

WW Value size mask

00 8 0b11111
01 16 0b11110
10 32 0b11100

000100 wrD rA rB 00W0

0 5 6 10 11 15 16 20 21 22

base rB( )27 31, mask∧←

wrDbase 8× base 8×( ) size 1–( )+, rA( ) 32 size–( ) 31,←
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d to frD. (Although a word index would
significan bits of the index are ignored

0000100

25 26 31
mvwf - Move from WideWord to Floating-Point

mvwf - Move from WideWord to Floating-Point

mvwf frD, wrA, index

A 32-bit subfiel of the contents of wrA starting at the byte specifie by the byte index are transferre
be more straightforward, a byte index is used to be consistent with the mvws instruction.) The least
to ensure proper alignment. The token field of wrA is ignored in this operation

Other registers altered:

• None

000100 frD wrA index 0010

0 5 6 10 11 15 16 20 21 22

base index 0b11100∧←

frD wrA( )base 8× base 8×( ) 31+,←
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irect

e contents of rB are transferred to frD.
he mvwsi instruction.) The least signifi
is operation

1000100

25 26 31
mvwfi - Move from WideWord to Floating-Point Indirect

mvwfi - Move from WideWord to Floating-Point Ind

mvwfi frD, wrA, rB

A 32-bit subfield of the contents of wrA starting at the byte specified by the low-order bits of th
(Although a word index would be more straightforward, a byte index is used to be consistent with t
cant bits of the index are ignored to ensure proper alignment. The token field of wrA is ignored in th

Other registers altered:

• None

000100 frD wrA rB 0010

0 5 6 10 11 15 16 20 21 22

base rB( )27 31, 0b11100∧←

frD wrA( )base 8× base 8×( ) 31+,←
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D. Depending on the size of the data to
or data sizes less than 32 bits, the high-

000001W

25 26 31
mvws - Move from WideWord to Scalar

mvws - Move from WideWord to Scalar

mvwsw rD, wrA, index

Variable values in the following equations are as follows:

if (size != 32)

A subfiel of the contents of wrA starting at the byte specifie by the byte index are transferred to r
be transferred, the least significant bits of the index may be ignored to ensure proper alignment. F
order bits of rD are cleared. The token field of wrA is ignored in this operation

Other registers altered:

• None

WW Value size mask

00 8 0b11111
01 16 0b11110
10 32 0b11100

000100 rD wrA index 00W0

0 5 6 10 11 15 16 20 21 22

base index mask∧←

rD 32 size–( ) 31, wrA( )base 8× base 8×( ) size 1–( )+,←

rD0 32 size– 1–( ), 0 32 size–( )←
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of rB are transferred to rD. Depending
ed to ensure proper alignment. For data
s operation

100001W

25 26 31
mvwsi - Move from WideWord to Scalar Indirect

mvwsi - Move from WideWord to Scalar Indirect

mvwsiw rD, wrA, rB

Variable values in the following equations are as follows:

if (size != 32)

A subfiel of the contents of wrA starting at the byte specifie by the low-order bits of the contents
on the size of the data to be transferred, the least significan bits of the contents of rB may be ignor
sizes less than 32 bits, the high-order bits of rD are cleared. The token field of wrA is ignored in thi

Other registers altered:

• None

WW Value size mask

00 8 0b11111
01 16 0b11110
10 32 0b11100

000100 rD wrA rB 00W0

0 5 6 10 11 15 16 20 21 22

base rB( )27 31, mask∧←

rD 32 size–( ) 31, wrA( )base 8× base 8×( ) size 1–( )+,←

rD0 32 size– 1–( ), 0 32 size–( )←
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specified by PP. If T=1, the subfield of
licated to form a 256-bit value which is
ata to be transferred, the least significan
ill be written to the token field of wrD.

000000W

25 26 31
mvwwx - Move from WideWord to WideWord

mvwwx - Move from WideWord to WideWord

mvwwp wrD, wrA (T = 0)
mvwwrpw wrD, wrA, index (T = 1)

Variable values in the following equations are as follows:

if (T = 0)

else

for i = 0 to (256 - size) by size

If T=0, the entire 256-bit contents of wrA are transferred to wrD, subject to the participation mode
wrA starting at the byte specified by the byte index and of the size indicated by the WW bits is rep
transferred to wrD, subject to the participation mode specifie by PP. Depending on the size of the d
bits of the index may be ignored to ensure proper alignment. Nominally, the token field of wrA w
However, some implementations may not ensure this capability.

Other registers altered:

• None

WW Value size mask

00 8 0b11111
01 16 0b11110
10 32 0b11100

000100 wrD wrA index PPWT

0 5 6 10 11 15 16 20 21 22

base index mask∧←

wrD wrA( )←

wrDi i size 1–( )+, wrA( )base 8× base 8×( ) size 1–( )+,←
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ct Replicating

he size indicated by the WW bits is rep-
ie by PP. Depending on the size of the
alignment. Nominally, the token fiel of
capability.

100000W

25 26 31
mvwwir - Move from WideWord to WideWord Indirect Replicating

mvwwir - Move from WideWord to WideWord Indire

mvwwirpw wrD, wrA, rB

Variable values in the following equations are as follows:

for i = 0 to (256 - size) by size

The subfiel of wrA starting at the byte specifie by the low-order bits of the contents of rB and of t
licated to form a 256-bit value which is transferred to wrD, subject to the participation mode specif
data to be transferred, the least significan bits of the contents of rB may be ignored to ensure proper
wrA will be written to the token field of wrD. H wever, some implementations may not ensure this 

Other registers altered:

• None

WW Value size mask

00 8 0b11111
01 16 0b11110
10 32 0b11100

000100 wrD wrA rB PPW1

0 5 6 10 11 15 16 20 21 22

base rB( )27 31, mask∧←

wrDi i size 1–( )+, wrA( )base 8× base 8×( ) size 1–( )+,←
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101110

25 26 31
notx - NOT

notx - NOT
Scalar Unit

not rD, rA (C = 0)
notc rD, rA (C = 1)

The bitwise inversion of the contents of rA is placed into rD.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ

000011 rD rA 00000 C

0 5 6 10 11 15 16 20 21 22

rD rA( )¬←
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101100

25 26 31
orx - OR

orx - OR
Scalar Unit

or rD, rA, rB (C = 0)
orc rD, rA, rB (C = 1)

The contents of rA are ORed with rB, and the result is placed into rD.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ

000011 rD rA rB C

0 5 6 10 11 15 16 20 21 22

rD rA( ) rB( )∨←
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lt is placed into rD.

31
ori - OR Immediate

ori - OR Immediate
Scalar Unit

ori rD, rA, IMM

The contents of rA are ORed with IMM (prepended with zeros to form a 32-bit value), and the resu

Other registers altered:

• None

0 5 6 10 11 15 16

101100 rD rA IMM

rD rA( ) 016
IMM||( )∨←
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lt is placed into rD.

31
oric - OR Immediate Recording Condition Codes

oric - OR Immediate Recording Condition Codes
Scalar Unit

oric rD, rA, IMM

The contents of rA are ORed with IMM (prepended with zeros to form a 32-bit value), and the resu

Other registers altered:

• Scalar condition code registers: LT, GT, EQ

0 5 6 10 11 15 16

101101 rD rA IMM

rD rA( ) 016
IMM||( )∨←
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 is placed into rD.

31
oris - OR Immediate Shifted

oris - OR Immediate Shifted
Scalar Unit

oris rD, rA, IMM

The contents of rA are ORed with IMM (appended with zeros to form a 32-bit value), and the result

Other registers altered:

• None

0 5 6 10 11 15 16

101110 rD rA IMM

rD rA( ) IMM 016||( )∨←
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The effective address is then forwarded
r failure of the operation is indicated by

31

t

probe - Probe Address

probe - Probe Address
Scalar Unit

probe rD, rA, offset

if EA is locally mapped

else

The 16-bit offset is sign-extended and added to the contents of rA to form the effective address EA.
to the address translation hardware to determine if the address is a valid local address. The success o
the contents of rD after execution of the instruction.

Other registers altered:

• None

0 5 6 10 11 15 16

110010 rD rA offse

EA rA( ) offset0( )16
offset||( )+←

rD 0xFFFFFFFF←

rD 0x00000000←
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SW is loaded with the contents of SSW.

111111

25 26 31
rfe - Return from Exception

rfe - Return from Exception

rfe

The program counter, PC, is loaded with the contents of the protected register FADR. Similarly, the P
The next instruction is always executed (one delay slot).

Other registers altered:

• None

000000

0 5 6 10 11 15 16 20 21

PC FADR( )←

PSW SSW( )←



 Page 82 of 136

d as contents of rB, inserting zeros into

000000

25 26 31
sllx - Shift Left Logical

sllx - Shift Left Logical
Scalar Unit

sll rD, rA, rB (C = 0)
sllc rD, rA, rB (C = 1)

The contents of rA are shifted left by the number of bits specifie by the low order f ve bits containe
the low order bits of the result. The result is placed into rD.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ

000011 rD rA rB C

0 5 6 10 11 15 16 20 21 22

s rB( )27, 31←

rD rA( )s, 31 0s||←
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 result. The result is placed into rD.

000010

25 26 31
sllix - Shift Left Logical Immediate

sllix - Shift Left Logical Immediate
Scalar Unit

slli rD, rA, shift_amount (C = 0)
sllic rD, rA, shift_amount (C = 1)

The contents of rA are shifted left by shift_amountbits, inserting zeros into the low-order bits of the

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ

000011 rD rA shift_amount C

0 5 6 10 11 15 16 20 21 22

s shift_amount←

rD rA( )s, 31 0s||←
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ed as contents of rB, sign-extending the

000101

25 26 31
srax - Shift Right Arithmetic

srax - Shift Right Arithmetic
Scalar Unit

sra rD, rA, rB (C = 0)
srac rD, rA, rB (C = 1)

The contents of rA are shifted right by the number of bits specifie by the low order f ve bits contain
high-order bits of the result. The result is placed into rD.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ

000011 rD rA rB C

0 5 6 10 11 15 16 20 21 22

s rB( )27, 31←

rD rA( )0( )s
rA( )0, (31-s)||←
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esult. The result is placed into rD.

000111

25 26 31
sraix - Shift Right Arithmetic Immediate

sraix - Shift Right Arithmetic Immediate
Scalar Unit

srai rD, rA, shift_amount (C = 0)
sraic rD, rA, shift_amount (C = 1)

The contents of rA are shifted right by shift_amountbits, sign-extending the high-order bits of the r

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ

000011 rD rA shift_amount C

0 5 6 10 11 15 16 20 21 22

s shift_amount←

rD rA( )0( )s
rA( )0, (31-s)||←
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ed as contents of rB, inserting zeros into

000001

25 26 31
srlx - Shift Right Logical

srlx - Shift Right Logical
Scalar Unit

srl rD, rA, rB (C = 0)
srlc rD, rA, rB (C = 1)

The contents of rA are shifted right by the number of bits specifie by the low order f ve bits contain
the high-order bits of the result. The result is placed into rD.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ

000011 rD rA rB C

0 5 6 10 11 15 16 20 21 22

s rB( )27, 31←

rD 0s
rA( )0, (31-s)||←
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he result. The result is placed into rD.

000011

25 26 31
srlix - Shift Right Logical Immediate

srlix - Shift Right Logical Immediate
Scalar Unit

srli rD, rA, shift_amount (C = 0)
srlic rD, rA, shift_amount (C = 1)

The contents of rA are shifted right by shift_amountbits, inserting zeros into the high-order bits of t

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ

000011 rD rA shift_amount C

0 5 6 10 11 15 16 20 21 22

s shift_amount←

rD 0s
rA( )0, (31-s)||←
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he 32-bit word contents of rD are stored
igned address). If the implementation is
of the store buffer, causing a flus of the
.

31

t

st - Store General-Purpose Register

st - Store General-Purpose Register
Scalar Unit

st rD, rA, offset

The 16-bit offset is sign-extended and added to the contents of rA to form the effective address EA. T
at the memory location specifie by EA (ignoring the least two significan bits to ensure a 32-bit al
equipped with a store buffer, this instruction writes the value to be stored to the appropriate subfiel
prior buffer contents if bits 0 through 26 of EA do not match the address contents of the store buffer

Other registers altered:

• None

0 5 6 10 11 15 16

110001 rD rA offse

EA 0xFFFFFFFC rA( ) offset0( )16
offset||+( )∧←

MEM[EA] rD←
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ffer to memory. The rD, rA, and offset

31

t

stbf - Store Buffer Flush

stbf - Store Buffer Flush
Scalar Unit

stbf rD, rA, offset

If the implementation is equipped with a store buffer, this instruction forces a flush of the store bu
fields are ignored in the current implementation ut designated for potential future use.

Other registers altered:

• None

0 5 6 10 11 15 16

111001 rD rA offse



 Page 90 of 136

100010

25 26 31
subx - Subtract

subx - Subtract
Scalar Unit

sub rD, rA, rB (C = 0)
subc rD, rA, rB (C = 1)

The contents of rB are subtracted from the contents of rA, and the result is placed into rD.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ, CA
• Scalar condition code OV is set if the operation causes overfl w.

000011 rD rA rB C

0 5 6 10 11 15 16 20 21 22

rD rA( ) rB( )¬ 1+ +←
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 the result is placed into rD.

100011

25 26 31
subex - Subtract Extended

subex - Subtract Extended
Scalar Unit

sube rD, rA, rB (C = 0)
subec rD, rA, rB (C = 1)

The contents of rB are subtracted from the contents of rA, using the carry bit CA as the carry in, and

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ, CA
• Scalar condition code OV is set if the operation causes overfl w.

000011 rD rA rB C

0 5 6 10 11 15 16 20 21 22

rD rA( ) rB( )¬ CA+ +←
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uction is identical to sub except that the

100100

25 26 31
subu - Subtract

subu - Subtract
Scalar Unit

subu rD, rA, rB

The contents of rB are subtracted from the contents of rA, and the result is placed into rD. This instr
OV condition code is updated to reflect unsigned arithmetic

Other registers altered:

• Scalar condition code registers: LT, GT, EQ, CA
• Scalar condition code OV is set if the operation causes overfl w.

000011 rD rA rB 1

0 5 6 10 11 15 16 20 21 22

rD rA( ) rB( )¬ 1+ +←
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turn triggers an exception. Refer to the

000000

25 26 31
sys - System Call

sys - System Call

sys

A system call is made by setting bit 19 of the ESW (Exception Source Word) register which in
TA2_SW RISC Processor Architecture manual for details regarding exceptions.

Other registers altered:

• None

000001 code

0 5 6
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ster

he 16-bit token fiel associated with the
ensure a 256-bit aligned address) is then

31

t

tkld - Load Token Field into General-Purpose Register

tkld - Load Token Field into General-Purpose Regi
Scalar Unit

tkld rD, rA, offset

The 16-bit offset is sign-extended and added to the contents of rA to form the effective address EA. T
256-bit wide word at the memory location specifie by EA (ignoring the least f ve significan bits to
loaded into the least significant half of rD

Other registers altered:

• None

0 5 6 10 11 15 16

010010 rD rA offse

EA 0xFFFFFFE0 rA( ) offset0( )16
offset||( )+( )∧←

rD16 31, token field of MEM[EA]←
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ield

. The least significant half of rD is then
ifie by EA (ignoring the least f ve sig-

31

t

tkst - Store General-Purpose Register into Token Field

tkst - Store General-Purpose Register into Token F
Scalar Unit

tkst rD, rA, offset

The 16-bit offset is sign-extended and added to the contents of rA to form the effective address EA
stored into the 16-bit token fiel associated with the 256-bit wide word at the memory location spec
nificant bits to ensure a 256-bit aligned address)

Other registers altered:

• None

0 5 6 10 11 15 16

010011 rD rA offse

EA 0xFFFFFFE0 rA( ) offset0( )16
offset||( )+( )∧←

token field of MEM[EA] rD16 31,←
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ords, or 8 words. The aggregate sums of
token fiel of wrA will be written to the

overfl w.

100000W

25 26 31
waddx - WideWord Add

waddx - WideWord Add
WideWord Unit

waddpw wrD, wrA, wrB (C = 0)
waddcpw wrD, wrA, wrB (C = 1)

Variable values in the following equations are as follows:

for i = 0 to (256 - size) by size

if PP bits and conditions are set accordingly

The WW fiel determines if the 256-bit contents of wrA and wrB are treated as 32 bytes, 16 half-w
the aligned data field of wrA and wrB are placed into wrD, subject to participation. Nominally, the
token field of wrD. H wever, some implementations may not ensure this capability.

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ, CA
• A WideWord OV condition code bit is set if the operation in its corresponding datapath causes 

WW Value size

00 8
01 16
10 32

000010 wrD wrA wrB PPWC

0 5 6 10 11 15 16 20 21 22

wrDi i size 1–( )+, wrA( )i i size 1–( )+, wrB( )i i size 1–( )+,+←
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ords, or 8 words. The aggregate sums of
uses the associated bit of the WideWord
the token field of wrD. However, some

overfl w.

100001W

25 26 31
waddex - WideWord Add Extended

waddex - WideWord Add Extended
WideWord Unit

waddepw wrD, wrA, wrB (C = 0)
waddecpw wrD, wrA, wrB (C = 1)

Variable values in the following equations are as follows:

for i = 0 to (256 - size) by size

if PP bits and conditions are set accordingly

The WW fiel determines if the 256-bit contents of wrA and wrB are treated as 32 bytes, 16 half-w
the aligned data field of wrA and wrB are placed into wrD, subject to participation. Each data fiel
Carry register as a carry in for the operation. Nominally, the token field of wrA will be written to
implementations may not ensure this capability.

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ, CA
• A WideWord OV condition code bit is set if the operation in its corresponding datapath causes 

WW Value size

00 8
01 16
10 32

000010 wrD wrA wrB PPWC

0 5 6 10 11 15 16 20 21 22

wrDi i size 1–( )+, wrA( )i i size 1–( )+, wrB( )i i size 1–( )+, CAi 8⁄+ +←
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into wrD, subject to participation. The
ation. Nominally, the token fiel of wrA
ility.

101000W

25 26 31
wandx - WideWord AND

wandx - WideWord AND
WideWord Unit

wandpw wrD, wrA, wrB (C = 0)
wandcpw wrD, wrA, wrB (C = 1)

Variable values in the following equations are as follows:

for i = 0 to (256 - size) by size

if PP bits and conditions are set accordingly

The 256-bit contents of wrA are ANDed with the 256-bit contents of wrB, and the result is placed
WW fiel simply effects how participation applies and how condition codes are updated for this oper
will be written to the token field of wrD. H wever, some implementations may not ensure this capab

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ

WW Value size

00 8
01 16
10 32

000010 wrD wrA wrB PPWC

0 5 6 10 11 15 16 20 21 22

wrDi i size 1–( )+, wrA( )i i size 1–( )+, wrB( )i i size 1–( )+,∧←
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rand in wrA, the operand with bit 0, the
the token fiel of wrA will be written to

0001010

25 26 31
wfabsx - WideWord Floating-Point Absolute Value

wfabsx - WideWord Floating-Point Absolute Value
WideWord Unit

wfabsp wrD, wrA (C = 0)
wfabscp wrD, wrA (C = 1)

for i = 0 to 224 by 32

if PP bits and conditions are set accordingly

The 256-bit contents of wrA are treated as 8 single-precision floating-poin operands. For each ope
sign bit, set to one is placed into the corresponding fiel of wrD, subject to participation. Nominally,
the token field of wrD. H wever, some implementations may not ensure this capability.

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ
• FPSR may also be updated if any floating-point xceptions occur.

011101 wrD wrA 00000 PP1C

0 5 6 10 11 15 16 20 21 22

wrDi i 31+, 1 wrA( )|| i 1+ i 31+,←
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he aggregate floating-point sums of the
eptions may be triggered by this opera-

e implementations may not ensure this

0000000

25 26 31
wfaddx - WideWord Floating-Point Add

wfaddx - WideWord Floating-Point Add
WideWord Unit

wfaddp wrD, wrA, wrB (C = 0)
wfaddcp wrD, wrA, wrB (C = 1)

for i = 0 to 224 by 32

if PP bits and conditions are set accordingly

 (using floating-point arithmetic

The 256-bit contents of wrA and wrB are treated as 8 single-precision floating-point operands. T
aligned data field of wrA and wrB are placed into wrD, subject to participation. Floating-point exc
tion. Nominally, the token field of wrA will be written to the token field of wrD. However, som
capability.

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ
• FPSR may also be updated if any floating-point xceptions occur.

011101 wrD wrA wrB PP1C

0 5 6 10 11 15 16 20 21 22

wrDi i 31+, wrA( )i i 31+, wrB( )i i 31+,+←
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aggregate floating-poin products of the
eptions may be triggered by this opera-

e implementations may not ensure this

0001100

25 26 31
wfmulx - WideWord Floating-Point Multiply

wfmulx - WideWord Floating-Point Multiply
WideWord Unit

wfmulp wrD, wrA, wrB (C = 0)
wfmulcp wrD, wrA, wrB (C = 1)

for i = 0 to 224 by 32

if PP bits and conditions are set accordingly

 (using floating-point arithmetic

The 256-bit contents of wrA and wrB are treated as 8 single-precision floating-poin operands. The
aligned data field of wrA and wrB are placed into wrD, subject to participation. Floating-point exc
tion. Nominally, the token field of wrA will be written to the token field of wrD. However, som
capability.

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ
• FPSR may also be updated if any floating-point xceptions occur.

011101 wrD wrA wrB PP1C

0 5 6 10 11 15 16 20 21 22

wrDi i 31+, wrA( )i i 31+, wrB( )i i 31+,×←
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rand in wrA, the operand with bit 0, the
the token fiel of wrA will be written to

0001000

25 26 31
wfnegx - WideWord Floating-Point Negate

wfnegx - WideWord Floating-Point Negate
WideWord Unit

wfnegp wrD, wrA (C = 0)
wfnegcp wrD, wrA (C = 1)

for i = 0 to 224 by 32

if PP bits and conditions are set accordingly

The 256-bit contents of wrA are treated as 8 single-precision floating-poin operands. For each ope
sign bit, inverted is placed into the corresponding fiel of wrD, subject to participation. Nominally,
the token field of wrD. H wever, some implementations may not ensure this capability.

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ
• FPSR may also be updated if any floating-point xceptions occur.

011101 wrD wrA 00000 PP1C

0 5 6 10 11 15 16 20 21 22

wrDi i 31+, wrA( )i¬ wrA( )||
i 1+ i 31+,←
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aggregate floating-point differences of
xceptions may be triggered by this oper-
e implementations may not ensure this

0000010

25 26 31
wfsubx - WideWord Floating-Point Subtract

wfsubx - WideWord Floating-Point Subtract
WideWord Unit

wfsubp wrD, wrA, wrB (C = 0)
wfsubcp wrD, wrA, wrB (C = 1)

for i = 0 to 224 by 32

if PP bits and conditions are set accordingly

 (using floating-point arithmetic

The 256-bit contents of wrA and wrB are treated as 8 single-precision floating-point operands. The
the aligned data field of wrA and wrB are placed into wrD, subject to participation. Floating-point e
ation. Nominally, the token field of wrA will be written to the token field of wrD. However, som
capability.

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ
• FPSR may also be updated if any floating-point xceptions occur.

011101 wrD wrA wrB PP1C

0 5 6 10 11 15 16 20 21 22

wrDi i 31+, wrA( )i i 31+, wrB( )i i 31+,–←
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precision floating-point operand is con-
cipation. Floating-point exceptions may
f wrD. However, some implementations

0000100

25 26 31
wftix - WideWord Floating-Point to Integer

wftix - WideWord Floating-Point to Integer
WideWord Unit

wftip wrD, wrA (C = 0)
wfticp wrD, wrA (C = 1)

for i = 0 to 224 by 32

if PP bits and conditions are set accordingly

 (assuming floating-point input operand

The 256-bit contents of wrA are treated as 8 single-precision floating-point operands. Each single-
verted to a 32-bit integer, and the aggregation of these 8 integers are placed into wrD, subject to parti
be triggered by this operation. Nominally, the token fiel of wrA will be written to the token fiel o
may not ensure this capability.

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ
• FPSR may also be updated if any floating-point xceptions occur.

011101 wrD wrA 00000 PP1C

0 5 6 10 11 15 16 20 21 22

wrDi i 31+, int wrA( )i i 31+,( )←
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erted to a singe-precision floating-poin
, subject to participation. Floating-point
the token field of wrD. However, some

0000110

25 26 31
witfx - WideWord Integer to Floating-Point

witfx - WideWord Integer to Floating-Point
WideWord Unit

witfp wrD, wrA (C = 0)
witfcp wrD, wrA (C = 1)

for i = 0 to 224 by 32

if PP bits and conditions are set accordingly

 (assuming integer input operand)

The 256-bit contents of wrA are treated as eight 32-bit integer operands. Each integer operand is conv
number, and the aggregation of these 8 single-precision floating-poin numbers are placed into wrD
exceptions may be triggered by this operation. Nominally, the token field of wrA will be written to
implementations may not ensure this capability.

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ
• FPSR may also be updated if any floating-point xceptions occur.

011101 wrD wrA 00000 PP1C

0 5 6 10 11 15 16 20 21 22

wrDi i 31+, fp wrA( )i i 31+,( )←
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The 256-bit data value and 16-bit token
bit aligned address) are then loaded into

31

t

wld - Load WideWord Register

wld - Load WideWord Register
WideWord Unit

wld wrD, rA, offset

The 16-bit offset is sign-extended and added to the contents of rA to form the effective address EA.
value at the memory location specifie by EA (ignoring the least f ve significan bits to ensure a 256-
wrD.

Other registers altered:

• None

0 5 6 10 11 15 16

110100 wrD rA offse

EA 0xFFFFFFE0 rA( ) offset0( )16
offset||( )+( )∧←

wrD MEM[EA]←
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s as a selector. If the bit is 1, the corre-
ipation. If the bit is 0, the corresponding
ominally, the token fiel of wrA will be

101111W

25 26 31
wmrgx - WideWord Merge

wmrgx - WideWord Merge
WideWord Unit

wmrgcp wrD, wrA, wrB (C = 0)
wmrgccp wrD, wrA, wrB (C = 1)

Variable values in the following equations are as follows:

for i = 0 to 248 by 8

if PP bits and conditions are set accordingly

if

else

Each bit of the WideWord condition code register specified by the WW bits of the instruction serve
sponding byte contents of wrA are placed into the corresponding byte lane of wrD, subject to partic
byte contents of wrB are placed into the corresponding byte lane of wrD, subject to participation. N
written to the token field of wrD. H wever, some implementations may not ensure this capability.

Other registers altered:

If C =1, WideWord condition code registers: LT, GT, EQ

WW Value CC Mnemonic (c)

00 EQ eq
01 LT lt
10 GT gt
11 M m

000010 wrD wrA wrB PPWC

0 5 6 10 11 15 16 20 21 22

CCi 8⁄ 1=

wrDi i 7+, wrA( )i i 7+,←

wrDi i 7+, wrB( )i i 7+,←
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igned-integer byte or half-word of wrB,
words. The resulting signed halfword or
are updated as a result of this operation.
ntations may not ensure this capability.

100110W

25 26 31
wmules - WideWord Multiply Even Signed

wmules - WideWord Multiply Even Signed
WideWord Unit

wmulespw wrD, wrA, wrB

Variable values in the following equations are as follows:

for i = 0 to (256 - ) by

if PP bits and conditions are set accordingly

Each even-numbered signed-integer byte or half-word of wrA is multiplied by the corresponding s
where the WW fiel determines if the 256-bit contents of wrA and wrB are treated as bytes or half-
word products are placed, in the same order, into wrD, subject to participation. No condition codes
Nominally, the token field of wrA will be written to the to en field of wrD. H wever, some impleme

Other registers altered:

• None

WW Value size

00 8
01 16

000010 wrD wrA wrB PPW0

0 5 6 10 11 15 16 20 21 22

2 size× 2 size×

wrDi i 2 size× 1–( )+, wrA( )i i size 1–( )+, wrB( )i i size 1–( )+,×←
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g unsigned-integer byte or half-word of
half-words. The resulting unsigned half-
ion codes are updated as a result of this

e implementations may not ensure this

100110W

25 26 31
wmuleu - WideWord Multiply Even Unsigned

wmuleu - WideWord Multiply Even Unsigned
WideWord Unit

wmuleupw wrD, wrA, wrB

Variable values in the following equations are as follows:

for i = 0 to (256 - ) by

if PP bits and conditions are set accordingly

Each even-numbered unsigned-integer byte or half-word of wrA is multiplied by the correspondin
wrB, where the WW fiel determines if the 256-bit contents of wrA and wrB are treated as bytes or
word or word products are placed, in the same order, into wrD, subject to participation. No condit
operation. Nominally, the token fiel of wrA will be written to the token fiel of wrD. However, som
capability.

Other registers altered:

• None

WW Value size

00 8
01 16

000010 wrD wrA wrB PPW1

0 5 6 10 11 15 16 20 21 22

2 size× 2 size×

wrDi i 2 size× 1–( )+, wrA( )i i size 1–( )+, wrB( )i i size 1–( )+,×←
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gned-integer byte or half-word of wrB,
words. The resulting signed halfword or
are updated as a result of this operation.
ntations may not ensure this capability.

100111W

25 26 31
wmulos - WideWord Multiply Odd Signed

wmulos - WideWord Multiply Odd Signed
WideWord Unit

wmulospw wrD, wrA, wrB

Variable values in the following equations are as follows:

for i = 0 to (256 - ) by

if PP bits and conditions are set accordingly

Each odd-numbered signed-integer byte or half-word of wrA is multiplied by the corresponding si
where the WW fiel determines if the 256-bit contents of wrA and wrB are treated as bytes or half-
word products are placed, in the same order, into wrD, subject to participation. No condition codes
Nominally, the token field of wrA will be written to the to en field of wrD. H wever, some impleme

Other registers altered:

• None

WW Value size

00 8
01 16

000010 wrD wrA wrB PPW0

0 5 6 10 11 15 16 20 21 22

2 size× 2 size×

wrDi i 2 size× 1–( )+, wrA( )i size+ i 2 size 1–×( )+, wrB( )i size+ i 2 size 1–×( )+,×←
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g unsigned-integer byte or half-word of
half-words. The resulting unsigned half-
ion codes are updated as a result of this

e implementations may not ensure this

100111W

25 26 31
wmulou - WideWord Multiply Odd Unsigned

wmulou - WideWord Multiply Odd Unsigned
WideWord Unit

wmuloupw wrD, wrA, wrB

Variable values in the following equations are as follows:

for i = 0 to (256 - ) by

if PP bits and conditions are set accordingly

Each odd-numbered unsigned-integer byte or half-word of wrA is multiplied by the correspondin
wrB, where the WW fiel determines if the 256-bit contents of wrA and wrB are treated as bytes or
word or word products are placed, in the same order, into wrD, subject to participation. No condit
operation. Nominally, the token fiel of wrA will be written to the token fiel of wrD. However, som
capability.

Other registers altered:

• None

WW Value size

00 8
01 16

000010 wrD wrA wrB PPW1

0 5 6 10 11 15 16 20 21 22

2 size× 2 size×

wrDi i 2 size× 1–( )+, wrA( )i size+ i 2 size 1–×( )+, wrB( )i size+ i 2 size 1–×( )+,×←
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icipation. The WW field simply effects
oken field of wrA will be written to the

101110W

25 26 31
wnotx - WideWord NOT

wnotx - WideWord NOT
WideWord Unit

wnotpw wrD, wrA (C = 0)
wnotcpw wrD, wrA (C = 1)

Variable values in the following equations are as follows:

for i = 0 to (256 - size) by size

if PP bits and conditions are set accordingly

The 256-bit contents of wrA are bitwise inverted, and the result is placed into wrD, subject to part
how participation applies and how condition codes are updated for this operation. Nominally, the t
token field of wrD. H wever, some implementations may not ensure this capability.

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ

WW Value size

00 8
01 16
10 32

000010 wrD wrA 00000 PPWC

0 5 6 10 11 15 16 20 21 22

wrDi i size 1–( )+, wrA( )i i size 1–( )+,¬←
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wrD, subject to participation. The WW
. Nominally, the token fiel of wrA will
.

101100W

25 26 31
worx - WideWord OR

worx - WideWord OR
WideWord Unit

worpw wrD, wrA, wrB (C = 0)
worcpw wrD, wrA, wrB (C = 1)

Variable values in the following equations are as follows:

for i = 0 to (256 - size) by size

if PP bits and conditions are set accordingly

The 256-bit contents of wrA are ORed with the 256-bit contents of wrB, and the result is placed into
fiel simply effects how participation applies and how condition codes are updated for this operation
be written to the token field of wrD. H wever, some implementations may not ensure this capability

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ

WW Value size

00 8
01 16
10 32

000010 wrD wrA wrB PPWC

0 5 6 10 11 15 16 20 21 22

wrDi i size 1–( )+, wrA( )i i size 1–( )+, wrB( )i i size 1–( )+,∨←
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001110W

26 27 31
wpksx - WideWord Pack Signed

wpksx - WideWord Pack Signed
WideWord Unit

wpksw wrD, wrA, wrB

Variable values in the following equations are as follows:

for i = 0 to (128 - ) by

if

else if

else

if

else if

else

WW Value size min max

01 16

10 32

000010 wrD wrA wrB 00W0

0 5 6 10 11 15 16 20 21 22

27– 27 1–

215– 215 1–

size 2⁄( ) size 2⁄( )

wrA( )i 2× i 2×( ) size 1–+, min<

wrDi i size 2⁄( ) 1–+, min←

wrA( )i 2× i 2×( ) size 1–+, max>

wrDi i size 2⁄( ) 1–+, max←

wrDi i size 2⁄( ) 1–+, wrA( ) i 2×( ) size 2⁄( )+ i 2×( ) size 1–+,←

wrB( )i 2× i 2×( ) size 1–+, min<

wrD128 i+ 128 i size 2⁄( ) 1–+ +, min←

wrB( )i 2× i 2×( ) size 1–+, max>

wrD128 i+ 128 i size 2⁄( ) 1–+ +, max←

wrD128 i+ 128 i size 2⁄( ) 1–+ +, wrB( ) i 2×( ) size 2⁄( )+ i 2×( ) size 1–+,←
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teger half-word or word, as specifie by
he value of the source element is outside
imum or maximum value appropriately.
n. Token operation is undefined for this
wpksx - WideWord Pack Signed

Let the source vector be the concatenation of the contents of wrA followed by wrB. Each signed in
the WW bits, of the source vector is converted to a signed integer byte or half-word, respectively. If t
the bounds that can be represented in the width of the result element, the result saturates to the min
The aggregate result is placed into wrD. Note that participation is not supported for this instructio
instruction.

Other registers altered:

• None
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teger half-word or word, as specifie by
ly. If the value of the source element is
lt saturates to the maximum value. The

. Token operation is undefined for this

001110W

26 27 31
wpkux - WideWord Pack Unsigned

wpkux - WideWord Pack Unsigned
WideWord Unit

wpkuw wrD, wrA, wrB

Variable values in the following equations are as follows:

for i = 0 to (128 - ) by

if

else

if

else

Let the source vector be the concatenation of the contents of wrA followed by wrB. Each unsigned in
the WW bits, of the source vector is converted to an unsigned integer byte or half-word, respective
greater than the maximum value that can be represented in the width of the result element, the resu
aggregate result is placed into wrD. Note that participation is not supported for this instruction
instruction.

Other registers altered:

• None

WW Value size max

01 16

10 32

000010 wrD wrA wrB 00W1

0 5 6 10 11 15 16 20 21 22

28 1–

216 1–

size 2⁄( ) size 2⁄( )

wrA( )i 2× i 2×( ) size 1–+, max>

wrDi i size 2⁄( ) 1–+, max←

wrDi i size 2⁄( ) 1–+, wrA( ) i 2×( ) size 2⁄( )+ i 2×( ) size 1–+,←

wrB( )i 2× i 2×( ) size 1–+, max>

wrD128 i+ 128 i size 2⁄( ) 1–+ +, max←

wrD128 i+ 128 i size 2⁄( ) 1–+ +, wrB( ) i 2×( ) size 2⁄( )+ i 2×( ) size 1–+,←
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ment of the contents of wrB are used to
nto wrD, subject to participation. Token

0010000

25 26 31
wprmx - WideWord Permute

wprmx - WideWord Permute
WideWord Unit

wprmp wrD, wrA, wrB

for i = 0 to 248 by 8

if PP bits and conditions are set accordingly

The contents of wrA are the source vector for this permutation operation. Bits 3 to 7 of each byte ele
select a byte element from the source vector for each byte element of the result. The result is placed i
operation is undefined for this operation

Other registers altered:

• None

000010 wrD wrA wrB PP00

0 5 6 10 11 15 16 20 21 22

s wrB( )i 3+ i 7+,←

wrDi i 7+, wrA( )s 8× s 8×( ) 7+,←
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0010010

25 26 31
wprmix - WideWord Permute Indirect

wprmix - WideWord Permute Indirect
WideWord Unit

wprmip wrD, wrA, rB

The following lookup table is used for selecting a permutation vector:
index vector

0x00 0x000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F
0x01 0x0102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F00
0x02 0x02030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F0001
0x03 0x030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F000102
0x04 0x0405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F00010203
0x05 0x05060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F0001020304
0x06 0x060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F000102030405
0x07 0x0708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F00010203040506
0x08 0x08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F0001020304050607
0x09 0x090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F000102030405060708
0x0A 0x0A0B0C0D0E0F101112131415161718191A1B1C1D1E1F00010203040506070809
0x0B 0x0B0C0D0E0F101112131415161718191A1B1C1D1E1F000102030405060708090A
0x0C 0x0C0D0E0F101112131415161718191A1B1C1D1E1F000102030405060708090A0B
0x0D 0x0D0E0F101112131415161718191A1B1C1D1E1F000102030405060708090A0B0C
0x0E 0x0E0F101112131415161718191A1B1C1D1E1F000102030405060708090A0B0C0D
0x0F 0x0F101112131415161718191A1B1C1D1E1F000102030405060708090A0B0C0D0E
0x10 0x101112131415161718191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F
0x11 0x1112131415161718191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F10
0x12 0x12131415161718191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F1011
0x13 0x131415161718191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F101112
0x14 0x1415161718191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F10111213

000010 wrD wrA rB PP00

0 5 6 10 11 15 16 20 21 22
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wprmix - WideWord Permute Indirect

0x15 0x15161718191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F1011121314
0x16 0x161718191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F101112131415
0x17 0x1718191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F10111213141516
0x18 0x18191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F1011121314151617
0x19 0x191A1B1C1D1E1F000102030405060708090A0B0C0D0E0F101112131415161718
0x1A 0x1A1B1C1D1E1F000102030405060708090A0B0C0D0E0F10111213141516171819
0x1B 0x1B1C1D1E1F000102030405060708090A0B0C0D0E0F101112131415161718191A
0x1C 0x1C1D1E1F000102030405060708090A0B0C0D0E0F101112131415161718191A1B
0x1D 0x1D1E1F000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C
0x1E 0x1E1F000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D
0x1F 0x1F000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E
0x20 0x00020406080A0C0E10121416181A1C1E01030507090B0D0F11131517191B1D1F
0x21 0x010003020504070609080B0A0D0C0F0E111013121514171619181B1A1D1C1F1E
0x22 0x03020100070605040B0A09080F0E0D0C13121110171615141B1A19181F1E1D1C
0x23 0x07060504030201000F0E0D0C0B0A090817161514131211101F1E1D1C1B1A1918
0x24 0x0F0E0D0C0B0A090807060504030201001F1E1D1C1B1A19181716151413121110
0x25 0x1F1E1D1C1B1A191817161514131211100F0E0D0C0B0A09080706050403020100
0x26 0x0002010304060507080A090B0C0E0D0F1012111314161517181A191B1C1E1D1F
0x27 0x0004010502060307080C090D0A0E0B0F1014111512161317181C191D1A1E1B1F
0x28 0x00080109020A030B040C050D060E070F10181119121A131B141C151D161E171F
0x29 0x0001040508090C0D1011141518191C1D020306070A0B0E0F121316171A1B1E1F
0x2A 0x02030001060704050A0B08090E0F0C0D12131011161714151A1B18191E1F1C1D
0x2B 0x06070405020300010E0F0C0D0A0B080916171415121310111E1F1C1D1A1B1819
0x2C 0x0E0F0C0D0A0B080906070405020300011E1F1C1D1A1B18191617141512131011
0x2D 0x1E1F1C1D1A1B181916171415121310110E0F0C0D0A0B08090607040502030001
0x2E 0x000104050203060708090C0D0A0B0E0F101114151213161718191C1D1A1B1E1F
0x2F 0x0001080902030A0B04050C0D06070E0F1011181912131A1B14151C1D16171E1F
0x30 0x0001020308090A0B1011121318191A1B040506070C0D0E0F141516171C1D1E1F
0x31 0x04050607000102030C0D0E0F08090A0B14151617101112131C1D1E1F18191A1B
0x32 0x0C0D0E0F08090A0B04050607000102031C1D1E1F18191A1B1415161710111213
0x33 0x1C1D1E1F18191A1B14151617101112130C0D0E0F08090A0B0405060700010203
0x34 0x0001020308090A0B040506070C0D0E0F1011121318191A1B141516171C1D1E1F
0x35 0x0001020310111213040506071415161708090A0B18191A1B0C0D0E0F1C1D1E1F

index vector
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s selected from a lookup table using the
nt of the permutation vector are used to
nto wrD, subject to participation. Token
wprmix - WideWord Permute Indirect

for i = 0 to 248 by 8

if PP bits and conditions are set accordingly

The contents of wrA are the source vector for this permutation operation. The permutation vector i
least significant bits of the contents of rB as an index into the table. Bits 3 to 7 of each byte eleme
select a byte element from the source vector for each byte element of the result. The result is placed i
operation is undefined for this operation

Other registers altered:

• None

0x36 0x1011121300010203141516170405060718191A1B08090A0B1C1D1E1F0C0D0E0F
0x37 0x08090A0B0C0D0E0F000102030405060718191A1B1C1D1E1F1011121314151617

index vector

index rB( )26 31,←

permvector vector index[ ]←

s permvectori 3+ i 7+,←

wrDi i 7+, wrA( )s 8× s 8×( ) 7+,←
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ords, or 8 words. The contents of each
nding data fiel contained as contents of
rD, subject to participation. Nominally,
y not ensure this capability.

000000W

25 26 31
wsllx - WideWord Shift Left Logical

wsllx - WideWord Shift Left Logical
WideWord Unit

wsllpw wrD, wrA, wrB (C = 0)
wsllcpw wrD, wrA, wrB (C = 1)

Variable values in the following equations are as follows:

for i = 0 to (256 - size) by size

if PP bits and conditions are set accordingly

The WW field determines if the 256-bit contents of wrA and wrB are treated as 32 bytes, 16 half-w
data fiel of wrA are shifted left by the number of bits specifie by the low order bits of the correspo
wrB, inserting zeros into the low order bits of each data fiel of the result. The result is placed into w
the token field of wrA will be written to the to en field of wrD. H wever, some implementations ma

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ

WW Value size bits

00 8 3
01 16 4
10 32 5

000010 wrD wrA wrB PPWC

0 5 6 10 11 15 16 20 21 22

s wrB( )i size bits–+ i size 1–+,←

wrDi i size 1–( )+, wrA( )i s+ i size 1–( )+, 0s||←
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ords. The contents of each data fiel of
ting zeros into the low order bits of each
fiel of wrA will be written to the token

000010W

25 26 31
wsllix - WideWord Shift Left Logical Immediate

wsllix - WideWord Shift Left Logical Immediate
WideWord Unit

wsllipw wrD, wrA, shift_amount (C = 0)
wsllicpw wrD, wrA, shift_amount (C = 1)

Variable values in the following equations are as follows:

for i = 0 to (256 - size) by size

if PP bits and conditions are set accordingly

The WW fiel determines if the 256-bit contents of wrA are treated as 32 bytes, 16 half-words, or 8 w
wrA are shifted left by the number of bits specifie by the appropriate bits of the shift_amount, inser
data fiel of the result. The result is placed into wrD, subject to participation. Nominally, the token
field of wrD. H wever, some implementations may not ensure this capability.

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ

WW Value size bits

00 8 3
01 16 4
10 32 5

000010 wrD wrA shift_amount PPWC

0 5 6 10 11 15 16 20 21 22

s shift_amount5 bits– 4,←

wrDi i size 1–( )+, wrA( )i s+ i size 1–( )+, 0s||←
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ords, or 8 words. The contents of each
ponding data fiel contained as contents
rD, subject to participation. Nominally,
y not ensure this capability.

000101W

25 26 31
wsrax - WideWord Shift Right Arithmetic

wsrax - WideWord Shift Right Arithmetic
WideWord Unit

wsrapw wrD, wrA, wrB (C = 0)
wsracpw wrD, wrA, wrB (C = 1)

Variable values in the following equations are as follows:

for i = 0 to (256 - size) by size

if PP bits and conditions are set accordingly

The WW field determines if the 256-bit contents of wrA and wrB are treated as 32 bytes, 16 half-w
data fiel of wrA are shifted right by the number of bits specifie by the low order bits of the corres
of wrB, sign-extending the high-order bits of each data fiel of the result. The result is placed into w
the token field of wrA will be written to the to en field of wrD. H wever, some implementations ma

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ

WW Value size bits

00 8 3
01 16 4
10 32 5

000010 wrD wrA wrB PPWC

0 5 6 10 11 15 16 20 21 22

s wrB( )i size bits–+ i size 1–+,←

wrDi i size 1–( )+, wrA( )i( )s
wrA( )i i size s 1––+,||←
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e

ords. The contents of each data fiel of
n-extending the high-order bits of each

fiel of wrA will be written to the token

000111W

25 26 31
wsraix - WideWord Shift Right Arithmetic Immediate

wsraix - WideWord Shift Right Arithmetic Immediat
WideWord Unit

wsraipw wrD, wrA, shift_amount (C = 0)
wsraicpw wrD, wrA, shift_amount (C = 1)

Variable values in the following equations are as follows:

for i = 0 to (256 - size) by size

if PP bits and conditions are set accordingly

The WW fiel determines if the 256-bit contents of wrA are treated as 32 bytes, 16 half-words, or 8 w
wrA are shifted right by the number of bits specifie by the appropriate bits of the shift_amount, sig
data fiel of the result. The result is placed into wrD, subject to participation. Nominally, the token
field of wrD. H wever, some implementations may not ensure this capability.

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ

WW Value size bits

00 8 3
01 16 4
10 32 5

000010 wrD wrA shift_amount PPWC

0 5 6 10 11 15 16 20 21 22

s shift_amount5 bits– 4,←

wrDi i size 1–( )+, wrA( )i( )s
wrA( )i i size s 1––+,||←
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ords, or 8 words. The contents of each
ponding data fiel contained as contents
to wrD, subject to participation. Nomi-
ns may not ensure this capability.

000001W

25 26 31
wsrlx - WideWord Shift Right Logical

wsrlx - WideWord Shift Right Logical
WideWord Unit

wsrlpw wrD, wrA, wrB (C = 0)
wsrlcpw wrD, wrA, wrB (C = 1)

Variable values in the following equations are as follows:

for i = 0 to (256 - size) by size

if PP bits and conditions are set accordingly

The WW field determines if the 256-bit contents of wrA and wrB are treated as 32 bytes, 16 half-w
data fiel of wrA are shifted right by the number of bits specifie by the low order bits of the corres
of wrB, inserting zeros into the high-order bits of each data fiel of the result. The result is placed in
nally, the token field of wrA will be written to the to en field of wrD. H wever, some implementatio

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ

WW Value size bits

00 8 3
01 16 4
10 32 5

000010 wrD wrA wrB PPWC

0 5 6 10 11 15 16 20 21 22

s wrB( )i size bits–+ i size 1–+,←

wrDi i size 1–( )+, 0s
wrA( )i i size s 1––+,||←
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ords. The contents of each data fiel of
serting zeros into the high-order bits of
oken fiel of wrA will be written to the

000011W

25 26 31
wsrlix - WideWord Shift Right Logical Immediate

wsrlix - WideWord Shift Right Logical Immediate
WideWord Unit

wsrlipw wrD, wrA, shift_amount (C = 0)
wsrlicpw wrD, wrA, shift_amount (C = 1)

Variable values in the following equations are as follows:

for i = 0 to (256 - size) by size

if PP bits and conditions are set accordingly

The WW fiel determines if the 256-bit contents of wrA are treated as 32 bytes, 16 half-words, or 8 w
wrA are shifted right by the number of bits specified by the appropriate bits of the shift_amount, in
each data fiel of the result. The result is placed into wrD, subject to participation. Nominally, the t
token field of wrD. H wever, some implementations may not ensure this capability.

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ

WW Value size bits

00 8 3
01 16 4
10 32 5

000010 wrD wrA shift_amount PPWC

0 5 6 10 11 15 16 20 21 22

s shift_amount5 bits– 4,←

wrDi i size 1–( )+, 0s
wrA( )i i size s 1––+,||←
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The 256-bit data value and 16-bit token
nifican bits to ensure a 256-bit aligned

31

t

wst - Store WideWord Register

wst - Store WideWord Register
WideWord Unit

wst wrD, rA, offset

The 16-bit offset is sign-extended and added to the contents of rA to form the effective address EA.
value contents of wrD are stored at the memory location specifie by EA (ignoring the least f ve sig
address).

Other registers altered:

• None

0 5 6 10 11 15 16

110101 wrD rA offse

EA 0xFFFFFFE0 rA( ) offset0( )16
offset||( )+( )∧←

MEM[EA] wrD←



 Page 128 of 136

ords, or 8 words. The aggregate differ-
minally, the token field of wrA will be

overfl w.

100010W

25 26 31
wsubx - WideWord Subtract

wsubx - WideWord Subtract
WideWord Unit

wsubpw wrD, wrA, wrB (C = 0)
wsubcpw wrD, wrA, wrB (C = 1)

Variable values in the following equations are as follows:

for i = 0 to (256 - size) by size

if PP bits and conditions are set accordingly

The WW field determines if the 256-bit contents of wrA and wrB are treated as 32 bytes, 16 half-w
ences of the aligned data fields of wrA and wrB are placed into wrD, subject to participation. No
written to the token field of wrD. H wever, some implementations may not ensure this capability.

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ, CA
• A WideWord OV condition code bit is set if the operation in its corresponding datapath causes 

WW Value size

00 8
01 16
10 32

000010 wrD wrA wrB PPWC

0 5 6 10 11 15 16 20 21 22

wrDi i size 1–( )+, wrA( )i i size 1–( )+, wrB( )i i size 1–( )+,¬ 1+ +←
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ords, or 8 words. The aggregate differ-
data field uses the associated bit of the

itten to the token fiel of wrD. However,

overfl w.

100011W

25 26 31
wsubex - WideWord Subtract Extended

wsubex - WideWord Subtract Extended
WideWord Unit

wsubepw wrD, wrA, wrB (C = 0)
wsubecpw wrD, wrA, wrB (C = 1)

Variable values in the following equations are as follows:

for i = 0 to (256 - size) by size

if PP bits and conditions are set accordingly

The WW field determines if the 256-bit contents of wrA and wrB are treated as 32 bytes, 16 half-w
ences of the aligned data fields of wrA and wrB are placed into wrD, subject to participation. Each
WideWord Carry register as a carry in for the operation. Nominally, the token fiel of wrA will be wr
some implementations may not ensure this capability.

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ, CA
• A WideWord OV condition code bit is set if the operation in its corresponding datapath causes 

WW Value size

00 8
01 16
10 32

000010 wrD wrA wrB PPWC

0 5 6 10 11 15 16 20 21 22

wrDi i size 1–( )+, wrA( )i i size 1–( )+, wrB( )i i size 1–( )+,¬ CAi 8⁄+ +←
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ords, or 8 words. The aggregate differ-
struction is identical to wsubexcept that
rA will be written to the token field of

overfl w.

100100W

25 26 31
wsubu - WideWord Subtract Unsigned

wsubu - WideWord Subtract Unsigned
WideWord Unit

wsubupw wrD, wrA, wrB

Variable values in the following equations are as follows:

for i = 0 to (256 - size) by size

if PP bits and conditions are set accordingly

The WW field determines if the 256-bit contents of wrA and wrB are treated as 32 bytes, 16 half-w
ences of the aligned data field of wrA and wrB are placed into wrD, subject to participation. This in
the OV condition codes are updated to reflect unsigned arithmetic. Nominally, the token field of w
wrD. However, some implementations may not ensure this capability.

Other registers altered:

• WideWord condition code registers: LT, GT, EQ, CA
• A WideWord OV condition code bit is set if the operation in its corresponding datapath causes 

WW Value size

00 8
01 16
10 32

000010 wrD wrA wrB PPW1

0 5 6 10 11 15 16 20 21 22

wrDi i size 1–( )+, wrA( )i i size 1–( )+, wrB( )i i size 1–( )+,¬ 1+ +←
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if WW=00 the 128-bit source vector is
is placed into wrD. The C bit indicates
for this instruction. Token operation is

001101W

26 27 31
wupkhx - WideWord Unpack High

wupkhx - WideWord Unpack High
WideWord Unit

wupkhsw wrD, wrA (C = 0)
wupkhuw wrD, wrA (C = 1)

Variable values in the following equations are as follows:

for i = 0 to (256 - ) by

if C=1

else

The most significant 128 bits of the contents of wrA are unpacked, or type promoted. For example,
treated as 16 bytes, where each byte is promoted to a 16-bit half-word to form a 256-bit result that
whether sign extension or zero fill is used in the unpacking. Note that participation is not supported
undefined for this instruction

Other registers altered:

• None

WW Value size

00 8
01 16

000010 wrD wrA 00000 00WC

0 5 6 10 11 15 16 20 21 22

2 size×( ) 2 size×( )

wrDi i 2 size×( ) 1–+, 0size
wrA( )i 2⁄ i 2⁄( ) size 1–+,||←

wrDi i 2 size×( ) 1–+, wrA( )i 2⁄( )size
wrA( )i 2⁄ i 2⁄( ) size 1–+,||←
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if WW=00 the 128-bit source vector is
is placed into wrD. The C bit indicates
for this instruction. Token operation is

001100W

26 27 31
wupklx - WideWord Unpack Low

wupklx - WideWord Unpack Low
WideWord Unit

wupklsw wrD, wrA (C = 0)
wupkluw wrD, wrA (C = 1)

Variable values in the following equations are as follows:

for i = 0 to (256 - ) by

if C=1

else

The least significant 128 bits of the contents of wrA are unpacked, or type promoted. For example,
treated as 16 bytes, where each byte is promoted to a 16-bit half-word to form a 256-bit result that
whether sign extension or zero fill is used in the unpacking. Note that participation is not supported
undefined for this instruction

Other registers altered:

• None

WW Value size

00 8
01 16

000010 wrD wrA 00000 00WC

0 5 6 10 11 15 16 20 21 22

2 size×( ) 2 size×( )

wrDi i 2 size×( ) 1–+, 0size
wrA( )128 i 2⁄( )+ 128 i 2⁄( ) size 1–+ +,||←

wrDi i 2 size×( ) 1–+, wrA( )128 i 2⁄( )+( )size
wrA( )128 i 2⁄( )+ 128 i 2⁄( ) size 1–+ +,||←
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laced into wrD, subject to participation.
operation. Nominally, the token fiel of
capability.

101010W

25 26 31
wxorx - WideWord Exclusive-OR

wxorx - WideWord Exclusive-OR
WideWord Unit

wxorpw wrD, wrA, wrB (C = 0)
wxorcpw wrD, wrA, wrB (C = 1)

Variable values in the following equations are as follows:

for i = 0 to (256 - size) by size

if PP bits and conditions are set accordingly

The 256-bit contents of wrA are exclusive-ORed with the 256-bit contents of wrB, and the result is p
The WW fiel simply effects how participation applies and how condition codes are updated for this
wrA will be written to the token field of wrD. H wever, some implementations may not ensure this 

Other registers altered:

• If C =1, WideWord condition code registers: LT, GT, EQ

WW Value size

00 8
01 16
10 32

000010 wrD wrA wrB PPWC

0 5 6 10 11 15 16 20 21 22

wrDi i size 1–( )+, wrA( )i i size 1–( )+, wrB( )i i size 1–( )+,⊕←
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101010

25 26 31
xorx - Exclusive OR

xorx - Exclusive OR
Scalar Unit

xor rD, rA, rB (C = 0)
xorc rD, rA, rB (C = 1)

The contents of rA are exclusive-ORed with rB, and the result is placed into rD.

Other registers altered:

• If C =1, scalar condition code registers: LT, GT, EQ

000011 rD rA rB C

0 5 6 10 11 15 16 20 21 22

rD rA( ) rB( )⊕←
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d the result is placed into rD.

31
xori - Exclusive OR Immediate

xori - Exclusive OR Immediate
Scalar Unit

xori rD, rA, IMM

The contents of rA are exclusive-ORed with IMM (prepended with zeros to form a 32-bit value), an

Other registers altered:

• None

0 5 6 10 11 15 16

101010 rD rA IMM

rD rA( ) 016
IMM||( )⊕←
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on Codes

d the result is placed into rD.

31
xoric - Exclusive OR Immediate Recording Condition Codes

xoric - Exclusive OR Immediate Recording Conditi
Scalar Unit

xoric rD, rA, IMM

The contents of rA are exclusive-ORed with IMM (prepended with zeros to form a 32-bit value), an

Other registers altered:

• Scalar condition code registers: LT, GT, EQ

0 5 6 10 11 15 16

101011 rD rA IMM

rD rA( ) 016
IMM||( )⊕←
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5. Appendix – Phase 2 Digital ASIC Step-Stress and Lifetime Testing Results 



4/29/2015

1

© The Aerospace Corporation 2008

IRIS Digital Lifetest Reliability 
Results Summary

Dan Marrujo, Jeff Draper, Jon Osborn

10-31-2014

BLUF: Calculated S9 Mean Lifeteime Result
Report Type ALTA QCP

User Jon Osborn
Company The Aerospace Corporation

Date 10/8/2014

Temperature = 378
Confidence Bounds Used: 2-Sided

Confidence Bounds Method: Fisher Matrix
Confidence Level = 0.6

Upper Bound (0.8) = 5755.896482
Mean Life = 4732.674268 Hr

Lower Bound (0.2) = 3891.349644

User Info

User Input

ALTA Output

End of Quick Results Report

Report Type ALTA QCP

User Jon Osborn
Company The Aerospace Corporation

Date 10/8/2014

Temperature = 378
Confidence Bounds Used: 2-Sided

Confidence Bounds Method: Fisher Matrix
Confidence Level = 0.9

Upper Bound (0.95) = 6939.218643
Mean Life = 4732.674268 Hr

Lower Bound (0.05) = 3227.770571
End of Quick Results Report

User Info

User Input

ALTA Output

S9 Mean Time to Failure (MTTF) 
is most likely 4733 Power On Hours 

With Vcore= 1.2V, Vio=2.3V and 105C



4/29/2015

2

Quantities and Temperatures of 
IRIS Split Lots Lifetested

125C 133C 150C

Temperature (K)

Split ID T=398 T=406 T=423 Sub‐Totals

S9 30 40 30 100

S3 30 40 30 100

POR 20 0 20 40

Sub‐Totals: 80 80 80 240

Observations, Inputs, Tools and Analysis
• Most T=0hr fails were removed during packaged part functional screening at TestEdge

• 40 S0, 100 S3 and 100 S9 parts were lifetested at three temperatures
– S0: 5 of 40 parts failed, 1 failed in first 168hr interval, More fails than expected. Not the focus of this 

briefing
– S3: 4 of 100 parts failed, 2 failed in first 168hr interval, most likely T=0+ and random failures.
– S9: 62 of 100, parts failed, 0 failed in first 168hr interval. Basis of S9 MTTF estimate

• S0, S3 and S9 core logic current and Fmax trends: 
– Core logic lifetested using same temperature/voltage test conditions 
– S0, S3, S9, Core logic all degraded similarly, but did not fail
– See Verigy Trend Data File: IRIS Life-Test Interactive Chart Hrs-2538.xlsm

• S0, S3 and S9 IO Current Trends:
– IO voltages were identical for all three test temperatures, Vio=2.3V
– IO Operating Current (IDD OPER PAD) remained constant ~20mA during test for S0 and S3 (regular 

DGFET IO Devices)
– IO Operating Current (IDD OPER PAD) Increased from ~20mA to ~60mA for S9 over the lifetest 

(Modified DGFET IO Devices)
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3

Observations, Inputs, Tools and Analysis (cont)

• S9 Failure Signatures
– 3 of 62, S9 parts failed due to internal functional failure. Inability to pass test vectors.
– 59 of 62, S9 parts failed due to IO continuity failure. Inability to sink or source current 

through an input or output pin.
• S9 Voltages, Temperatures, and Times-To-Failure used as data input

– Summary Fail Data File: Time-to-Failure_10-8-2014.xls
• Data Analyzed using Reliasoft Inc. Accelerated Lifetest Analysis (ALTA) Version-9. 

– Software lifetest algorithms based on Wayne Nelson, “Accelerated Testing Statistical 
Models, Test Plans, and Data Analysis”, Wiley, 2004.

– Lifetest data best fit by Weibull Distribution.
– Since Vio was not accelerated in this lifetest, de-accelerated to 105C use condition using 

Arrhenius relation and activation energies from this three temperature life test.

PoF Inference and Root-Cause Hypothesis
• S0, S3, S9 show similar Fmax Degradation rates under identical stress conditions in Step 

Stress (SS) and Life Test (LT)
– S3 and S9 test results show little affect on core Fmax degradation rate based on SS and LT 

measurements (consistent  with design changes)
• S0 and S3 show little increase in IO operating current under SS and LT

– S0 and S3 test results show little  IO reliability sensitivity under LT stress (consistent  with 
design changes)

• S9 IO supply currents increase rapidly under constant voltage stress during SS testing 
and during LT

– As a result of  S9 testing, initially IO current increases  rapidly , consistent with GO-TDDB  
degradation , leading  to high internal gate leakage currents (consistent  with design changes)

– Subsequently  after a latency period S9 continuity failures  occur
– Continuity failures are consistent  with  Electromigration (EM) of IO interconnect to IO PAD 

(consistent  design changes)

S9 SS and LT results are consistent with a two failure mechanisms: GO-TDDB 
and EM degradation processes, leading to device failures observed in 

DARPA IRIS lifetest
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Simplified ITAGR-1 Output PAD Circuit Diagram

IO PAD

VDD PAD

GND PAD

PKG PAD

Bondwire

PKG PIN

Package
Trace

PKG PAD PKG PIN

PKG PAD PKG PIN

Package

ESD DIODE

ESD DIODE

pDGFET

nDGFET

Output to
Core Logic

Locations of IRIS 
Digital Design modifications

Locations of Excessive
Current Density

ITAGR1 Die

Fish-Bone Diagram of S9 Continuity Failures

3) Open Bond Wire1) Open Package Pin
or socket issue

2) Open Package Trace

4) Open Bond Pad
to Buffer Trace 

due to EM of 
thin wire or 

reduced vias*

5) Open IO Buffer 
to VDD Trace

due to high TDDB 
current* and 

subsequent EM 

6) Open IO Buffer 
to GND Trace

due to high TDDB 
current* and 

subsequent EM

Continuity Failure Observed
at  Pin

1) Not likely as  part was removed, 
pin inspected and inserted multiple 
times with same fail signature.

2) Not likely as  part was x-ray
inspected no open trace was 
observed in package traces.

3) Not likely as  part was x-ray
inspected no open/lifted bondwire
was observed in failed parts

5&6) Not likely, no common VDD or GND
with “open pad/pin” was found in .gds layout

4) Working hypothesis, performing DB-FIB on
failure sites now. 

*Location of ITAGR-1 Design Changes
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Aerospace Bond-Wire x-Ray Inspection Images 
(one of four parts, typical result, supporting conclusion #3 of fish-bone)

Pads 34-66

Pads 100-132

Pads 67-99

Pads 1-33

Overview

Lifted bond-wires not 
observed prior to de-cap on 
failed pads/pins

Overall Layout of 90nm ITAGR-1 Processor (EM Sites)

Memory Memory

#1

#67

#66

#132

#100

#99

#33

#34

#119 (M3 Failed)

#107 (M4 Failed)

#57 (M4 EM Failed)

#67 (VIA3 EM Failed)

#117 (M3 Via Worn)
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Est. Current Density In ITAGR-1 
Thin Output Wires and Reduced Via Design Variants
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Via Current Density

Via: M3 to M4

Likely Worn

Note: Red “Dots” are associated with the most common failure pads
(#57, #107, #119, #67)

S9 Verigy Data: IO Degradation, Current vs. Time
• IO is under constant voltage stress
• Vio-min=2.3V, Three Temperatures
• Inputs Driven, Outputs are Unloaded
• Test Condition for Best Case IO Lifetime S0@150C,2.3V

S3@150C,2.3V

S9@125C,2.3V

S9@133C,2.3V

S9@150C,2.3V

125C, 100% Increase by ~700hrs

133C, 100% Increase by ~350hrs

150C, 100% Increase by ~200hrs
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S9 Weibull plots, max. use condition: 105C

60% Confidence Bounds Shown 90% Confidence Bounds Shown

S9 Weibull Standardized Residuals 

• Weibull distribution Fits lifetest data 
well

• Alternative Log-Normal fit was also 
investigated, but Weibull provided 
smaller error residuals



4/29/2015

8

S9 Weibull Probability Density Function
Weibull Fit Parameters
Beta=1.8623
B=4283
C=0.0640
Temp=105C

S9 Reliability vs Time Plots at 105C

60% Confidence Bounds Shown 90% Confidence Bounds Shown

* red-line: 50% survivors* red-line: 50% survivors
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S9 Unreliability vs Time Plots at 105C

60% Confidence Bounds Shown 90% Confidence Bounds Shown

* red-line: 50% failures * red-line: 50% failures

Calculated S9 Mean Lifeteime Result
Report Type ALTA QCP

User Jon Osborn
Company The Aerospace Corporation

Date 10/8/2014

Temperature = 378
Confidence Bounds Used: 2-Sided

Confidence Bounds Method: Fisher Matrix
Confidence Level = 0.6

Upper Bound (0.8) = 5755.896482
Mean Life = 4732.674268 Hr

Lower Bound (0.2) = 3891.349644

User Info

User Input

ALTA Output

End of Quick Results Report

Report Type ALTA QCP

User Jon Osborn
Company The Aerospace Corporation

Date 10/8/2014

Temperature = 378
Confidence Bounds Used: 2-Sided

Confidence Bounds Method: Fisher Matrix
Confidence Level = 0.9

Upper Bound (0.95) = 6939.218643
Mean Life = 4732.674268 Hr

Lower Bound (0.05) = 3227.770571
End of Quick Results Report

User Info

User Input

ALTA Output

S9 Mean Time to Failure (MTTF) 
is most likely 4733 Power On Hours 

with Vcore= 1.2V, Vio=2.3V and 105C
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Backup Charts

Aerospace DB-FIB EM-site Cross-Section Images

Insert DB-FIB EM-site Images here



4/29/2015

11

Aerospace HR-TEM DGFET Gate-Oxide 
Cross-Section Images

Insert HRTEM DGFET Gate-Oxide here

Aerospace HR-TEM EM-site Plan View Images

Insert HRTEM EM-site Images here


